Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

for

Highly selective synthesis of substituted (*E*)-alkenylsilatranes via catalytic trans-silylation and mechanistic implications

B. Sztorch, D. Frąckowiak, J. Pyziak, A. Czapik, M. Hoffmann and B. Marciniec

1. General considerations	1
1.1. Analytical methods	. 1
1.2. Reagents and solvents	. 1
1.3. Reaction setup for the catalytic synthesis of alkenylsilatranes	.2
2. DFT Calculations	3
2.1. Geometries and Cartesian coordinates for all the structures calculated in this study using B3LYP/SDD	.3
3. Synthetic procedures	8
3.1. General protocol for the synthesis of alkenylsilatranes using liquid olefins	.8
3.1.1. Synthesis of (E)-1-styryl-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2a)	.9
3.2. General protocol for the synthesis of alkenylsilatranes using solid olefins	.9
3.3. Homocoupling reaction of 1-vinylsilatrane1	0
3.4. Synthesis of the ruthenium silatranyl complex 31	0
4. Crystallographic data1	2
4.1. Analytical methods1	2
4.2. Crystal packing of 2a, 2b, 2c (viewed along a-axis)1	2
4.3. Crystallographic data1	4
5. Analytical data 1	5
5.1. 1-vinylsilatrane (vinylsilatrane)1	5
5.2. (E)-1-styryl-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2a)1	6
5.3. (E)-1-(4-methylstyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2c)1	6
5.4. (E)-1-(4-fluorostyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2d)1	6

6.	NMR Spectra	19
	5.13. Ruthenium silatranyl complex (3)	.19
	5.12. (E)-1,2-bis(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)ethene (2b)	.19
	5.11. (E)-1-(2-(9H-carbazol-9-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2k)	.19
	5.10. (E)-1-(2-(pyridin-4-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2j)	.18
	5.9. (E)-1-(2-(naphthalen-2-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2i)	.18
	5.8. (E)-1-(2-([1,1'-biphenyl]-4-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2h)	.18
	5.7. (E)-1-(4-methoxystyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2g)	.17
	5.6. (E)-1-(4-bromostyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2f)	.17
	5.5. (E)-1-(4-chlorostyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2e)	.17

1. General considerations

1.1. Analytical methods

¹H and ¹³C{¹H} NMR spectra were recorded on a Bruker Ultrashield 300 MHz operating at 300 and 75 MHz, respectively. ²⁹Si{¹H} NMR and ³¹P{¹H} spectra were recorded on a Bruker Ascend 400 MHz Nanobay operating at 79 and 162 MHz, respectively. Elemental analyses were carried out with a Vario EL III instrument (Elementar GmbH). Mass spectrometry analyses were performed using QTOF mass spectrometer (Impact HD, Bruker) equipped with the Electrospray ion source and quadrupole-Time-of-flight mass analyser. Dichloromethane-methanol and chloroform-methanol mixtures were used as solvents. The measurements was performed in the positive ion mode with the desolvation gas flow 4.0 L/h and capillary voltage set to 4500 V. The elemental compositions prediction for all the sodated ions confirmed their molecular formula and the isotopic profile.

1.2. Reagents and solvents

The chemicals were purchased from the following sources: trimethoxyvinylsilane, triethanolamine, styrene, 4-methylstyrene, 4-fluorostyrene, 4-chlorostyrene, 4-bromostyrene, 4-methoxystyrene, 4-vinylbiphenyl, 2-vinylnaphtalene, 9-vinylcarbazole, 9-vinylanthracene, 4-vinylpyridine, *tert*-butyl vinyl ether, calcium hydride, tricyclohexylphosphine, triphenylphosphine, 2-methoxyethanol, cycloocta-1,5-diene, toluene, formaldehyde, benzene-d₆, toluene-d₈ chloroform-d₁, molecular sieves (4A, 5A) and silica gel 60 from Aldrich; dichloromethane, *n*-hexane, methanol from Avantor Performance Materials Poland S.A.; ruthenium(III) chloride hydrate from ABCR.

1-Vinylsilatrane,¹ RuHCl(CO)(PCy₃)₂,² RuHCl(CO)(PPh₃)₃³ were prepared according to the literature procedures.

Liquid olefins were dried with CaH₂ (24 h) and distilled. Solid olefins were used as received. Toluene and hexane were dried and purified with MB SPS 800 Solvent Drying System. Dichloromethane, ethanol and deuterated solvents were dried over CaH₂, distilled and stored under argon atmosphere in Rotaflo Schlenk flasks.

1.3. Reaction setup for the catalytic synthesis of alkenylsilatranes

Unless mentioned otherwise, all operations were performed by using standard Schlenk techniques. Catalytic reactions were carried out in a custom built glass reactors connected to a Davies condenser and argon inlet equipped with bubbler (Figure 1).

Figure 1. Reaction setup for the catalytic synthesis of alkenylsilatranes.

References

- 1 J. D. Nies, J. M. Bellama, N. Ben-Zvi, J. Organomet. Chem. 1985, 296, 315
- 2 C. S. Yi; D. W. Lee, Y. Chen, *Organometallics*, 1999, **18**, 2043
- 3 J. Levison, S.D. Robinson, J. Chem. Soc., 1970, A, 2947

2. DFT Calculations

All the optimizations, DFT calculations for molecules, geometries of potential energy minima and saddle points were performed using B3LYP (hybrid Becke's three parameter functional and Lee-Young-Parr exchange correlation potential) in connection with SDD bases. Frequency calculations at the same level of theory were also performed. Thermal corrections to Gibbs free energies calculated at 298 K were included. All computations were carried out with Gaussian09.

2.1. Geometries and Cartesian coordinates for all the structures calculated in this study using B3LYP/SDD

	O O N		
H₃P−Ru- Cl [∜]	U		
A1			
E = -2205	5.62153969 a. (u.	
0	-1.18370000	1.78470000	-1.32750000
Ν	-0.37880000	3.55100000	0.61000000
0	1.60080000	2.59970000	-0.97300000
0	0.16840000	0.93260000	1.04810000
С	1.57530000	4.02910000	-0.79870000
Н	1.08430000	4.49080000	-1.66890000
Н	2.61270000	4.37860000	-0.76330000
С	0.89520000	-0.04150000	-1.55740000
Н	0.06780000	-0.62780000	-1.95560000
С	0.19480000	1.78570000	2.21370000
Н	1.23410000	2.07080000	2.43140000
Н	-0.18910000	1.20600000	3.06050000
С	-1.53290000	3.95570000	-0.22620000
Н	-1.15480000	4.57300000	-1.04880000
Н	-2.27090000	4.55170000	0.33520000
С	-0.69220000	3.02670000	1.96040000
Н	-1.74350000	2.71950000	1.97580000
Н	-0.54750000	3.78460000	2.74710000
С	0.83480000	4.39370000	0.50900000
Н	1.48230000	4.15710000	1.36030000
Н	0.60500000	5.47110000	0.54310000
С	-2.19250000	2.68460000	-0.81060000
Н	-2.78380000	2.16390000	-0.04340000
Н	-2.86000000	2.94700000	-1.63890000
С	2.14490000	-0.17090000	-2.18490000
Н	2.91560000	0.57570000	-2.01570000
Н	2.26910000	-0.81430000	-3.05570000
Ru	2.19940000	-1.50790000	-0.36510000
Н	0.80640000	-1.51640000	0.32540000
Р	2.89500000	-2.85260000	1.51930000
Н	4.28330000	-3.15100000	1.63410000
Н	2.66860000	-2.26550000	2.79400000
Н	2.35180000	-4.15300000	1.74590000
С	1.54080000	-2.92920000	-1.30630000
0	1.15580000	-3.86800000	-1.93280000
Cl	3.73830000	0.12480000	0.64740000
Si	0.35190000	1.48340000	-0.57990000

	O O N		
H-	Si O		
H ₃ P-Ru	<u>co</u>		
A1A2			
E = -220	5.599047177a.	u.	
0	1.15160000	-1.93840000	-1.74130000
Ν	0.96100000	-3.32670000	0.65930000
0	-1.51130000	-2.68710000	-0.34170000
0	0.75520000	-0.61720000	0.94820000
С	-1.32720000	-4.05190000	0.08780000
Н	-1.11320000	-4.69000000	-0.78430000
Н	-2.26670000	-4.39390000	0.53850000
С	-1.01200000	0.00230000	-1.36630000
Н	-0.32240000	0.55950000	-2.00010000
С	1.08430000	-1.36100000	2.14520000
Н	0.17360000	-1.52900000	2.73890000
Н	1.77820000	-0.75310000	2.73730000
С	1.76650000	-3.93300000	-0.43860000
Н	1.11640000	-4.61240000	-0.99960000
Н	2.61600000	-4.51310000	-0.04450000
С	1.76030000	-2.69250000	1.74650000
Н	2.75890000	-2.47580000	1.35360000
Н	1.86830000	-3.36520000	2.61110000
С	-0.18830000	-4.14570000	1.12910000
Н	-0.53800000	-3.71650000	2.07430000
Н	0.09920000	-5.19420000	1.30750000
С	2.25240000	-2.81100000	-1.38500000
Н	3.05850000	-2.22690000	-0.91540000
Н	2.64460000	-3.25130000	-2.30950000
С	-2.38610000	-0.06150000	-1.78380000
Н	-3.00540000	-0.88400000	-1.42930000
Н	-2.69150000	0.37840000	-2.73190000
Ru	-2.27510000	1.35670000	-0.17860000
Н	-0.72390000	1.31790000	-0.01320000
Р	-4.51470000	2.29750000	0.71390000
Н	-5.55610000	1.33450000	0.83120000
Н	-4.46930000	2.74470000	2.06470000
Н	-5.25270000	3.37750000	0.13920000
С	-2.05470000	2.73690000	-1.37080000
0	-1.90940000	3.65570000	-2.11340000
Cl	-2.56690000	-0.14220000	1.73160000
Si	-0.10910000	-1.48250000	-0.45290000

 $H_{3}P Ru = 0$ $H_{3}P Ru = 0$ C_{1}^{2} H_{3}^{2} H_{3

0	-1.46490000	1.17190000	-1.51680000
Ν	-1.46940000	3.44960000	-0.03380000
0	0.97780000	2.58700000	-0.76380000
0	-0.69360000	1.23380000	1.29630000
С	0.72830000	3.98930000	-0.98740000
Н	0.46140000	4.14690000	-2.04340000
Н	1.65840000	4.53050000	-0.78360000
С	0.77420000	-0.23580000	-0.57570000
Н	0.08130000	-1.01550000	-0.90380000
С	-1.18330000	2.31430000	2.12150000
Н	-0.32910000	2.88100000	2.51870000
Н	-1.72700000	1.87440000	2.96410000
С	-2.37260000	3.43320000	-1.21180000
Н	-1.84840000	3.90720000	-2.04900000
Н	-3.30360000	3.99360000	-1.03180000
С	-2.11660000	3.21750000	1.28270000
Н	-3.06010000	2.68900000	1.11060000
Н	-2.34090000	4.15850000	1.80890000
С	-0.40210000	4.48070000	-0.05230000
Н	-0.00650000	4.57830000	0.96430000
Н	-0.77710000	5.46670000	-0.36920000
С	-2.67750000	1.96010000	-1.57170000
Н	-3.41740000	1.53280000	-0.87920000
Н	-3.07740000	1.88900000	-2.58900000
С	2.03070000	-0.20190000	-1.44300000
Н	2.49800000	0.78040000	-1.54050000
Н	1.94110000	-0.71500000	-2.40130000
Ru	2.90270000	-1.19750000	0.13990000
Н	1.03080000	-0.49900000	0.51190000
Р	5.17110000	-1.44140000	-0.36800000
Н	5.75300000	-0.34090000	-1.06030000
Н	6.10010000	-1.56070000	0.70970000
Н	5.61780000	-2.51620000	-1.19240000
С	2.46740000	-2.83330000	-0.56140000
0	2.21070000	-3.92290000	-0.97990000
Cl	3.56950000	0.68760000	1.53660000
Si	-0.19440000	1.39450000	-0.35530000

•.			
A3			
E =-2205	.64022036 a. ι	I.	
0	-0.62640000	0.87990000	-1.23510000
Ν	-0.52630000	2.27810000	0.99740000
0	1.43570000	0.53860000	0.93760000
0	-1.47510000	-0.15640000	1.38850000
С	1.78930000	1.77540000	1.62790000
Н	2.39060000	2.37530000	0.93710000
Н	2.39580000	1.51520000	2.50260000
С	0.28070000	-1.59720000	-0.29650000
Н	-0.51150000	-1.96410000	-0.96760000
С	-2.15450000	0.85930000	2.16130000
Н	-1.77440000	0.83650000	3.19240000
Н	-3.22270000	0.61830000	2.18390000
С	-0.32130000	3.09000000	-0.23930000

Н	0.75580000	3.21620000	-0.38300000
Н	-0.78730000	4.08260000	-0.15820000
С	-1.92890000	2.24320000	1.50360000
Н	-2.59940000	2.35190000	0.64590000
Н	-2.13180000	3.06340000	2.20730000
С	0.49600000	2.49270000	2.05780000
Н	0.11550000	2.05470000	2.98600000
Н	0.68560000	3.56120000	2.23650000
С	-0.89400000	2.28560000	-1.43220000
Н	-1.97880000	2.42870000	-1.53480000
Н	-0.41060000	2.60110000	-2.36270000
С	1.64210000	-1.62250000	-1.02300000
Н	1.58840000	-1.08300000	-1.98080000
Н	1.96420000	-2.65590000	-1.20790000
Ru	3.09170000	-0.52610000	0.01680000
Н	0.29520000	-2.25930000	0.57820000
Р	4.83880000	-1.53620000	-1.20140000
Н	4.51090000	-2.68240000	-1.99320000
Н	5.47780000	-0.73080000	-2.18750000
Н	5.98840000	-2.05990000	-0.53240000
С	3.14820000	-1.79940000	1.32030000
0	3.22100000	-2.60150000	2.20670000
Cl	3.38640000	1.49140000	-1.39360000
Si	-0.18010000	0.14190000	0.26760000

A3A4

E = -220	5.59600947 a.	u.	
0	0.27230000	1.52770000	-1.49290000
Ν	-0.08770000	3.12930000	0.72660000
0	1.92740000	1.32330000	1.00830000
0	-0.80980000	0.44480000	0.88910000
С	2.32500000	2.72080000	1.05700000
Н	2.68640000	3.03930000	0.06890000
Н	3.14320000	2.81050000	1.77960000
С	-0.47120000	-1.36370000	-1.00590000
Н	-1.36570000	-0.94640000	-1.46450000
С	-1.21480000	1.32050000	1.98140000
Н	-0.48730000	1.23710000	2.80160000
Н	-2.18790000	0.96430000	2.33520000
С	-0.27130000	3.74410000	-0.60270000
Н	0.68180000	4.18980000	-0.90930000
Н	-1.03440000	4.54110000	-0.60030000
С	-1.31080000	2.77910000	1.47980000
Н	-2.17000000	2.86350000	0.80460000
Н	-1.48670000	3.46010000	2.32910000
С	1.09540000	3.54660000	1.50650000
Н	0.90280000	3.33730000	2.56510000
Н	1.30100000	4.62560000	1.40900000
С	-0.64690000	2.64090000	-1.61640000
Н	-1.67680000	2.29150000	-1.44640000
Н	-0.56590000	3.01040000	-2.64420000
С	0.64340000	-1.60770000	-1.75000000
Н	0.86940000	-1.02830000	-2.64070000
Н	1.57590000	-2.26310000	-1.30440000
Ru	2.15730000	-1.06200000	-0.22810000
Н	-0.51730000	-1.56280000	0.06240000
Р	4.51600000	-1.80960000	0.48460000
н	5.24770000	-2.50790000	-0.51730000
Н	5.43480000	-0.74600000	0.72070000

CI	3.44920000	0.04420000	-2.00300000
Si	0.63920000	0.71840000	-0.02210000
<u>/_</u> N#	\geq		
o-si	<u>¢</u> 7		
	ະວັ		
	//		
A4	,		
E = -2205	.63608947 a.	u.	
0	-0.20370000	0.10510000	-1.34800000
Ν	1.52580000	-1.68760000	0.00240000
0	-1.29530000	-2.12960000	-0.00240000
0	-0.15610000	0.03980000	1.47840000
С	-0.41520000	-3.07390000	-0.67540000
Н	-0.36660000	-2.82470000	-1.74580000
Н	-0.86720000	-4.06720000	-0.56460000
С	-1.82600000	2.42560000	0.11260000
Н	-1.49000000	2.48230000	-0.91880000
С	0.79170000	-0.79390000	2.19310000
Н	0.28520000	-1.70540000	2.54530000
Н	1.12430000	-0.22220000	3.06730000
С	1.97780000	-1.04140000	-1.23500000
Н	1.75720000	-1.71020000	-2.07590000
Н	3.06600000	-0.85450000	-1.23610000
С	1.99100000	-1.15760000	1.28810000
н	2.57720000	-0.25170000	1.09510000
н	2.64940000	-1.86630000	1.82260000
C	1.00090000	-3.05310000	-0.05690000
н	0.94330000	-3.44750000	0.96490000
н	1.05350000	-3.73340000	-0.63490000
	1.23210000	0.29490000	-1.45510000
п	1.30340000	1.03970000	-0.71730000
	-2 12410000	2 911/0000	-2.40100000
с ц	-3.12410000	2.81140000	-0.3060000
Ц	-3.387/0000	3.01850000	1 40060000
Ru	-3.21060000	0.57100000	0.10360000
н	-1.05930000	2 31870000	0.10500000
P	-4 16780000	-1 59800000	-0 37810000
Н	-5 58180000	-1 57150000	-0 57480000
н	-3.75790000	-2.21600000	-1.58520000
Н	-4.05780000	-2.67630000	0.53940000
С	-3.16220000	0.27470000	1.91720000
0	-3.21940000	0.10390000	3.09390000
CI	-3.89040000	1.09050000	-2.17600000
Si	-1.04850000	-0.40510000	0.06530000

4.84030000 -2.63320000 1.60920000

1.32140000 -1.92200000 1.17500000

0.81970000 -2.49260000 2.09070000

Н

С

0

O-Si dO CO H ₃ P-Ru CI					
A5					
E = -2205	.63760128 a.	u.			
0	2.07450000	0.94310000	-1.38980000		
Ν	4.10550000	1.56130000	0.53460000		
0	2.87070000	-1.03850000	0.44330000		
0	1.37850000	1.22180000	1.31100000		

С	4.27360000	-0.88200000	0.08770000
Н	4.36230000	-0.78890000	-1.00470000
Н	4.78850000	-1.79660000	0.40720000
С	4.89320000	0.35300000	0.78080000
Н	4.92080000	0.17170000	1.86240000
Н	5.94030000	0.45810000	0.44080000
С	2.36500000	1.57900000	2.31310000
Н	2.70740000	0.67110000	2.83190000
Н	1.86230000	2.22710000	3.04080000
С	3.56440000	2.31250000	1.66920000
Н	3.22460000	3.28950000	1.30430000
Н	4.32700000	2.50180000	2.44700000
С	4.12940000	2.17910000	-0.79320000
Н	4.77010000	1.57300000	-1.44540000
Н	4.55700000	3.19840000	-0.77110000
С	2.71470000	2.24540000	-1.41530000
Н	2.09500000	2.97330000	-0.86970000
Н	2.77200000	2.55020000	-2.46700000
Si	1.60390000	0.08200000	0.02770000
Ru	-0.34930000	-1.19660000	-0.33790000
Р	0.94820000	-3.22190000	-0.11160000
Н	0.20210000	-4.41940000	-0.33620000
Н	2.00130000	-3.40270000	-1.04140000
Н	1.59210000	-3.55150000	1.11110000
С	-0.61680000	-1.07830000	1.48000000
0	-0.80630000	-1.08230000	2.65390000
CI	-0.33210000	-1.78560000	-2.71060000
С	-1.05790000	0.95040000	-0.79920000
Н	-0.50530000	1.18970000	-1.70270000
Н	-0.89660000	1.60830000	0.05000000
С	-2.17990000	0.11840000	-0.88810000
Н	-2.38620000	-0.32300000	-1.86220000
С	-3.28360000	-0.01070000	0.09160000
С	-4.31890000	-0.94010000	-0.18150000
Н	-4.26670000	-1.54090000	-1.08800000
С	-5.40550000	-1.08950000	0.69630000
Н	-6.19050000	-1.80690000	0.47020000
С	-5.47810000	-0.30790000	1.86570000
Н	-6.31770000	-0.41970000	2.54750000
С	-4.45630000	0.62340000	2.14670000
Н	-4.50810000	1.22970000	3.04770000
С	-3.37130000	0.77210000	1.27020000
Н	-2.59380000	1.49520000	1.50240000

A5A6

E	E =2205.61153509 a. u.				
C)	2.81720000	0.02650000	-1.95440000	
١	1	4.75150000	0.17310000	-0.04470000	
C)	2.50020000	-0.67770000	1.09300000	
C)	2.71120000	2.01520000	0.04570000	
0	;	3.59750000	-1.61940000	1.21070000	
ŀ	ł	3.51730000	-2.38990000	0.43180000	
ŀ	ł	3.53520000	-2.09940000	2.19290000	
0	;	3.88660000	2.31380000	0.84740000	
ŀ	ł	3.71200000	1.99730000	1.88590000	
ŀ	ł	4.02990000	3.39870000	0.82730000	
C	;	5.16290000	-0.32550000	-1.38190000	
ŀ	ł	5.09070000	-1.41850000	-1.37360000	
H	4	6.19920000	-0.04810000	-1.63170000	

С	5.11460000	1.58620000	0.25030000
Н	5.38830000	2.07310000	-0.69180000
Н	5.97880000	1.65360000	0.92900000
С	4.89620000	-0.78590000	1.08390000
Н	5.03570000	-0.21180000	2.00640000
Н	5.77220000	-1.43930000	0.95470000
С	4.17010000	0.22590000	-2.43050000
Н	4.34450000	1.29580000	-2.61780000
Н	4.26280000	-0.31570000	-3.37710000
Ru	0.21460000	-0.46520000	0.26390000
Р	0.32740000	-1.89120000	2.35100000
Н	0.67330000	-1.36770000	3.63760000
Н	-0.89060000	-2.53680000	2.72240000
Н	1.17990000	-3.03310000	2.32530000
С	-0.06270000	1.01370000	1.32990000
0	-0.21690000	1.92530000	2.07830000
Cl	0.66840000	-2.57560000	-0.98160000
С	-1.44280000	-0.06300000	-1.09420000
С	-0.23500000	0.52210000	-1.61550000
Н	-1.69030000	-1.05160000	-1.48170000
Н	-0.11050000	1.60300000	-1.63550000
Н	0.30350000	-0.00430000	-2.39760000
С	-2.63450000	0.69710000	-0.62350000
С	-3.86210000	0.00620000	-0.46910000
С	-2.61680000	2.08760000	-0.35170000
С	-5.02720000	0.67380000	-0.05260000
Н	-3.90370000	-1.05800000	-0.69820000
С	-3.77690000	2.75780000	0.06830000
Н	-1.69390000	2.65110000	-0.46150000
С	-4.99060000	2.05480000	0.21910000
Н	-5.95880000	0.12170000	0.05230000
Н	-3.74770000	3.81460000	0.29980000
Н	-5.88920000	2.57590000	0.54110000
Si	2.31420000	0.37620000	-0.34500000

A6

E = -2205.61586229 a. u.					
0	2.25000700	-2.04306400	-1.23825000		
Ν	4.07359700	-0.86328300	0.39925800		
0	1.58105300	-1.12717000	1.44030400		
0	2.23609600	0.81591400	-0.68780700		
С	2.66023500	-1.65752700	2.24312000		
Н	2.73868600	-2.74181500	2.07577200		
Н	2.40484200	-1.49040800	3.29477700		
С	3.43342400	1.44029200	-0.16714700		
Н	3.23138800	1.82252300	0.84414200		
Н	3.67058300	2.28936400	-0.81612800		
С	4.50881100	-2.10102000	-0.29281600		
Н	4.33877600	-2.94696100	0.38206800		
Н	5.57952700	-2.08190500	-0.55135900		
С	4.58849200	0.41295100	-0.15520600		
Н	4.91422500	0.23160400	-1.18538300		
Н	5.45153200	0.79730000	0.41140000		
С	3.98106100	-0.94219300	1.87675400		
Н	3.95313100	0.07943300	2.27165000		
Н	4.84520400	-1.45757800	2.32574300		
С	3.63806300	-2.28606300	-1.55776900		
Н	3.95572900	-1.59747600	-2.35525800		
Н	3.71651100	-3.31044200	-1.93667400		

Ru	-2.40872300	-1.11365100	-0.09605200
Р	-4.55688200	-0.19354400	0.12701400
Н	-4.80242400	0.94525800	-0.69109300
Н	-5.68542700	-0.99118700	-0.23226800
Н	-5.00271700	0.30538200	1.38626600
С	-2.13351200	-1.13759600	1.72315800
0	-2.04154400	-1.23865400	2.90928500
Cl	-3.00497400	-1.52108100	-2.42916000
С	-1.10040600	0.45973900	-0.52205900
С	-0.14645400	-0.71222000	-0.79330800
Н	-1.47434000	0.86178500	-1.46865400
Н	-0.14047200	-0.91243200	-1.86977600
Н	-0.54186300	-1.70323300	-0.34835600
С	-0.88275700	1.58519800	0.43841300
С	-1.36613100	2.86551600	0.06476100
С	-0.25966900	1.45596000	1.70507100
С	-1.24202500	3.97490500	0.91956700
Н	-1.83292000	2.99076400	-0.91119700
С	-0.13229800	2.56365400	2.55815500
Н	0.11914500	0.49110700	2.02616100
С	-0.62223000	3.82962600	2.17573300
Н	-1.62257700	4.94490800	0.60657100
Н	0.34021700	2.43782400	3.53033800
Н	-0.52518400	4.68252400	2.84381200
Si	1.67549500	-0.75316500	-0.24301500

A6A7

E = -220	5.59127177 a.	u.	
0	-2.20100000	-1.65920000	-0.62030000
Ν	-3.81620000	0.49570000	-1.06980000
0	-1.16610000	0.89930000	-1.55140000
0	-2.22320000	0.64510000	1.15010000
С	-2.06540000	1.19010000	-2.64540000
Н	-2.10000000	0.32700000	-3.32620000
Н	-1.65290000	2.04360000	-3.19290000
С	-3.34470000	1.55780000	1.09850000
Н	-2.99840000	2.53880000	0.74090000
Н	-3.71980000	1.67760000	2.12040000
С	-4.29090000	-0.81050000	-1.58150000
Н	-3.98620000	-0.89700000	-2.63060000
Н	-5.38810000	-0.90610000	-1.53830000
С	-4.44740000	0.98770000	0.17590000
Н	-4.92300000	0.13800000	0.67780000
Н	-5.22360000	1.74630000	-0.01700000
С	-3.47090000	1.51300000	-2.08800000
Н	-3.44330000	2.49340000	-1.59910000
Н	-4.21140000	1.56240000	-2.90310000
С	-3.61300000	-1.93610000	-0.76650000
Н	-4.06960000	-2.02740000	0.22980000
Н	-3.70780000	-2.89820000	-1.28090000
Ru	2.04280000	-1.06060000	-0.58720000
Р	4.51410000	-0.77670000	-0.47160000
Н	5.02010000	-0.64780000	0.85220000
Н	5.31710000	-1.86790000	-0.91450000
Н	5.21770000	0.29710000	-1.09690000
С	1.84100000	0.23580000	-1.88380000
0	1.79830000	0.99390000	-2.80150000
Cl	2.46940000	-3.05950000	0.76370000
С	1.25450000	0.06510000	1.05650000

С	0.14920000	-0.70730000	0.47500000
Н	1.70660000	-0.43620000	1.91630000
Н	-0.03750000	-1.62330000	1.04300000
Н	0.55700000	-1.62530000	-0.86640000
С	1.45020000	1.53910000	1.15030000
С	2.26300000	2.01320000	2.21280000
С	0.89100000	2.49280000	0.26270000
С	2.51140000	3.38520000	2.38910000
Н	2.69320000	1.29640000	2.91090000
С	1.13880000	3.86320000	0.44010000
Н	0.27650000	2.16660000	-0.57000000
С	1.94810000	4.32080000	1.50020000
Н	3.13460000	3.72180000	3.21460000
Н	0.70540000	4.57850000	-0.25600000
Н	2.13660000	5.38430000	1.62900000
Si	-1.51410000	-0.13060000	-0.21720000

A7 E = -2205.61697376 a. u.

0	4.17077000	0.88284100	0.30827900
Ν	5.06814400	-1.66101900	-0.22124000
0	2.54300100	-1.07960000	-1.11129400
0	3.15567200	-1.41972100	1.72646700
С	3.47810300	-1.57112000	-2.09498600
Н	3.91308700	-0.72158400	-2.64346500
Н	2.91718900	-2.18826400	-2.80515000
С	3.90102200	-2.65671900	1.70352200
Н	3.31841000	-3.42695000	1.17508300
Н	4.03488600	-2.97999500	2.74154300
С	6.00922500	-0.54683900	-0.46507500
Н	5.93217000	-0.25588400	-1.51879800
Н	7.05744700	-0.82796600	-0.26882600
С	5.27127500	-2.44243400	1.01737300
Н	5.91575700	-1.86182600	1.68679600
Н	5.76603600	-3.40966500	0.82885300
С	4.58705600	-2.40113600	-1.40679100
Н	4.15918800	-3.35084700	-1.06632400
Н	5.39615900	-2.63175200	-2.11980200
С	5.59558800	0.65363300	0.41604400
Н	5.85652800	0.47065800	1.46921300
Н	6.10057600	1.56845800	0.08758500
Ru	-3.77156600	-0.30366000	-0.08877700
Р	-4.98467600	-2.31744700	-0.02579400
Н	-6.36816900	-2.27048500	-0.37057600
Н	-4.54427900	-3.32594300	-0.92633900
Н	-5.06381600	-3.07270400	1.18223900
С	-3.63770600	-0.18548100	1.73753000
0	-3.58167200	-0.13965200	2.92715600
Cl	-4.28196600	-0.39089800	-2.49685800
С	0.31210400	0.68051100	0.03182300
С	1.40834700	0.61425000	0.82794200
Н	0.33220700	0.13260100	-0.91073900
Н	1.41832700	1.13683700	1.78538200
Н	-2.51420700	-1.21394000	0.01143700
С	-0.93927900	1.42015200	0.29960300
С	-1.99891500	1.32469300	-0.66450900
С	-1.13504400	2.23910600	1.42695000
С	-3.20585100	2.05706200	-0.48888500
Н	-1.80329000	0.83678800	-1.61493900
С	-2.33758900	2.96132400	1.60727200
Н	-0.34701400	2.33471400	2.16829600

С	-3.36782500	2.88164900	0.66235800
Н	-3.91483400	2.12138800	-1.31009300
н	-2.45539100	3.59168300	2.48503200
Н	-4.27861300	3.46166500	0.78634000
Si	2.95121700	-0.34181600	0.39388100

3. Synthetic procedures

3.1. General protocol for the synthesis of alkenylsilatranes using liquid olefins

A dried, argon filled glass reactor was charged with vinylsilatrane (100 mg, 0.5 mmol) and RuHCl(CO)(PCy₃)₂ (7.2 mg, 0.01 mmol, 2 mol%). The reactor was evacuated under reduced pressure on the Schlenk line for 15 min and filled again with argon. Then, the reactor was equipped with Davies condenser and argon inlet with bubbler and the solids were added 1 mL of toluene under intense stirring. After dissolution of the solids, an olefin (1 mmol, two-fold excess in relation to vinylsilatrane) and 2 mL of toluene were added to the reaction mixture and the reactor was heated at 120°C for 24 h in an oil bath. Then, the volatiles were removed under reduced pressure and the residue was dissolved in dichloromethane and preliminary purified on a short silica column. The resulting solution was concentrated, then pentane was added in order to precipitate the product. The solvent was decanted and the product was washed two times with pentane. The obtained powder or fluffy needles were kept under reduced pressure for 3 h in order to remove traces of solvents. Products **2c-g**, and **2j** were obtained in the above described manner.

Product		Isolated yield
	2c	80
	2d	80
	2e	83
	2f	81
	2g	86
	2j	60

Products **2c-g** were isolated as white or greyish-white powders or needles. Product **2j** was isolated as orange powder. The color may be due to formation of traces of unspecified impurities in the 4-vinylpyridine itself. After the distillation of 4-vinylpyridine the compound is colorless. However, after ca. 48 h in the refrigerator the color changes to deep orange.

3.1.1. Synthesis of (E)-1-styryl-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2a)

Compound **2a** was prepared in the same manner as described in section 3.1., but was isolated in a different way, because styryl derivative has low solubility in toluene (Figure 2). Solvent was decanted from the reaction mixture and the remaining solid was washed three times with small portions of cold toluene. After the volatiles were removed under reduced pressure, the pure product was isolated in 85% yield as a white, crystalline solid.

Figure 2. Product 2a precipitated from the reaction mixture.

3.2. General protocol for the synthesis of alkenylsilatranes using solid olefins

A dried, argon filled glass reactor was charged with vinylsilatrane (100 mg, 0.5 mmol), a solid olefin (0.5 mmol, equimolar amount in relation to vinylsilatrane) and RuHCl(CO)(PCy₃)₂ (7.2 mg, 0.01 mmol, 2 mol%). The reactor was evacuated under reduced pressure on the Schlenk line for 15 min and filled again with argon. Then, the reactor was equipped with Davies condenser and argon inlet with bubbler and the solids were added 3 mL of toluene under intense stirring. After dissolution of the solids, the reactor was heated at 120°C for 24 h on an oil bath. Then, the volatiles were removed under reduced pressure and residue was dissolved in dichloromethane and preliminary purified on the short silica column. The resulting solution was concentrated and added pentane in order to precipitate the product. The solvent was decanted and the product was washed two times with pentane. The obtained powders were kept under reduced pressure for 3 h in order to remove traces of solvents. Products **2h**, **2i** and **2k** were prepared in the above described manner.

Product		Isolated yield
	2h	89
	2i	86
	2k	81

3.3. Homocoupling reaction of 1-vinylsilatrane

A dried, argon filled glass reactor was charged with vinylsilatrane (200 mg, 1 mmol) and RuHCl(CO)(PCy₃)₂ (7.2 mg, 0.01 mmol, 2 mol%). The reactor was evacuated under reduced pressure on the Schlenk line for 15 min and filled again with argon. Then, the reactor was equipped with Davies condenser and argon inlet with bubbler and the solids were added 3 mL of toluene under intense stirring. After dissolution of the solids, the reactor was heated at 120°C on an oil bath. After ca. 20 min, white crystalline solid started to precipitate from the solution. After 24 h, the suspension was cooled down to room temperature and volatiles were removed under reduced pressure. The remaining residue was washed with ethyl acetate and hexane. (*E*)-1,2-bis(silatranyl)ethene was obtained as colourless, crystalline solid in 89% yield.

3.4. Synthesis of the ruthenium silatranyl complex 3.

A dried, argon filled glass reactor was charged with vinylsilatrane (50 mg, 0.25 mmol) and RuHCl(CO)(PPh₃)₃ (238 mg, 0.25 mmol). The reactor was evacuated under reduced pressure on the Schlenk line for 15 min and filled again with argon. Then, the reactor was equipped with Davies condenser and argon inlet with bubbler and the solids were added 3 mL of toluene upon intense stirring. Then, the reactor was heated at 100°C for 24 h on an oil bath. The initial suspension gradually

turned into clear, deep orange-brown solution (Figure 3a). After 24 h, the solution was cooled down to room temperature and toluene was removed under reduced pressure. The remaining solid was washed three times with ethanol (Figure 3b). Isolated complex was kept under reduced pressure for 5 h to remove traces of the solvents. Complex **3** was isolated as a pale yellow powder in 99% yield.

Figure 3. Synthesis of ruthenium silatranyl complex 3.

3a) Reaction mixture after 24 h.

3b) Washing of 3 with ethanol.

4. Crystallographic data

4.1. Analytical methods

The diffraction data were collected at room temperature with an Oxford Diffraction NewXcalibur diffractometer Mo Ka radiation (λ =0.71073 Å). Data collection and reduction were performed with the CrysAlis Pro software.¹ The structures of **2a**, **2b** and **2c** were solved by VLD procedure with the program Sir2014² and the structure of 2d was solved by charge flipping implemented in SUPERFLIP.³ The structure of **3** was solved by direct method with the SHELXS-2014.⁴ All structures were refined by F² SHELXL-2014.4 the full-matrix least-squares method on with The positions of C bound hydrogen atoms were placed in idealized positions and refined using the riding model and their isotropic displacement parameters were set equal to 1.2Ueq(C). Additional details concerning crystal data and structure refinement are given in Table 1. Molecular graphics were generated with Mercury 3.8 software.⁵

4.2. Crystal packing of 2a, 2b, 2c (viewed along a-axis)

2a

4.4. Crystal packing of 3

4.5. Crystallographic data

	2b*	2c	2e	3
empirical formula	$C_{14}H_{26}N_2O_6Si_8$	$C_{15}H_{21}NO_3Si$	C ₁₄ H ₁₈ CINO ₃ Si	C ₄₃ H ₄₂ CINO ₄ P ₂ RuSi
CCDC no.	-	CCDC 1524197	CCDC 1524196	CCDC 1524198
formula weight	372.54	291.42	311.83	863.32
crystal system	Orthorhombic	Orthorhombic	Orthorhombic	Triclinic
space group	Pbca	<i>P</i> bca	<i>P</i> bca	ΡĪ
<i>a</i> (Å)	11.649 (9)	11.4618(3)	11.5758(6)	9.6141(3)
<i>b</i> (Å)	11.796 (8)	14.1740(4)	14.1553(7)	12.1035(4)
<i>c</i> (Å)	12.183 (7)	18.5112(5)	18.2251(9)	18.1419(5)
a(°)	90	90	90	94.833(2)
β(°)	90	90	90	100.853(2)
γ(°)	90	90	90	104.855(2)
volume (ų)	1674.1 (19)	3007.32(14)	2986.3(3)	1984.39(17)
Ζ	8	8	8	2
temperature (K)	298 (2)	298 (2)	298 (2)	293(2)
radiation type	Mo K	Мо <i>К</i>	Мо <i>К</i>	Mo K
D _c		1.287	1.387	1.445
No. of measured, independent and observed [/ > 2 (/)] reflections		22931, 2641, 2015	20303, 2629,2031	56101, 6989, 6043
R _{int}		0.046	0.060	0.063
$R[F^2 > 2 (F^2)], wR(F^2),$		0.042, 0.109	0.044, 0.095	0.045, 0.095
S		1.04	1.06	1.09
No. of reflections		2641	2629	6989
No. of parameters		210	209	476
No. of restraints		0	0	0
H-atom treatment		H-atom parameters constrained	H-atom parameters constrained	H-atom parameters constrained
_{max} , min (e Å⁻³)		0.17, -0.18	0.22, -0.25	0.86, -0.49

Table 1. Crystallographic data and refinement details for compounds **2b**, **2c**, **2e**, **3**.

*Due to poor quality of the obtained crystals, structure **2b** was not deposited in CDDC base.

In silatranes the distance between the Si and N atoms falls in a range 2.05 - 2.20 Å and this value is shorter than the sum of van der Waals radii (3.5 Å). The Si-N distance found in the crystal structures of **2b**, **2c** and **2e** are typical and showed in Table 2. The Si-N distance can be correlated to nature of styryl group. Only in the compound **3** the distance increases (2.944(2) Å) and is slightly shorter than observed in analogous osmium complex (Si – N 3.000(7) Å).

Tuble Li Ocicolea geofficilioai parametero (7, 7	Table 2.	Selected	geometrical	parameters	(Å,	°))
---	----------	----------	-------------	------------	-----	----	---

	2b	2c	2e	3
Si – N	2.194(2)	2.162(2)	2.151(2)	2.944(2)

References

- 1 Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire, England.
- 2 M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone and G. Polidori, *J. Appl. Cryst.* 2015, **48**, 306
- 3 L. Palatinus, G. Chapuis J. Appl. Cryst. 2007, 40, 786
- 4 G. M. Sheldrick, Acta Cryst. C 2015, 71, 3
- 5 C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler, J. van de Streek, *J. Appl. Cryst.* 2006, **39**, 453

5. Analytical data

5.1. 1-vinylsilatrane (vinylsilatrane)

¹H NMR (DCCl₃, 300 MHz): δ 2.85 (t, J = 5.9 Hz, 6H, CH_2 -N), 3.82 (t, J = 5.9 Hz, 6H, CH_2 -O), 5.79 (m, 2H, H_2 C=), 5.99 (dd, J = 20.7, 13.4 Hz, 1H, =CH-Si); ¹³C NMR (DCCl₃, 75 MHz): δ 51.13 (C-N), 57.63 (C-O), 129.72 (=C-Si), 139.53 (C=C-Si); ²⁹Si NMR (DCCl₃, 79 MHz): δ -81.32

¹H NMR of vinylsilatrane in C₆D₆CD₃

¹H NMR (C₆D₅CD₃, **300** MHz): δ 1.93 (t, *J* = 5.8 Hz, 6H, C*H*₂-N), 3.36 (t, *J* = 5.8 Hz, 6H, C*H*₂-O), 6.00 (dd, *J* = 14.2, 5.5 Hz, 1H, *H*₂C=), 6.24 (dd, *J* = 20.1, 5.4 Hz, 1H, *H*₂C=), 6.47 (dd, *J* = 20.1, 14.2 Hz, 1H, =C*H*-Si)

5.2. (E)-1-styryl-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2a)

¹H NMR (DCCl₃, 300 MHz): δ 2.85 (t, J = 5.8 Hz, 6H, CH₂-N), 3.84 (t, J = 5.8 Hz, 6H, CH₂-O), 6.31 (d, J = 18.9 Hz, 1H, =CH-Si), 7.09 (d, J = 19.0 Hz, 1H, -CH=CH-Si), 7.06–7.46 (m, 5H, Ph); ¹³C NMR (DCCl₃, 75 MHz): δ 51.14, 57.78, 126.66, 127.03, 128.14, 128.99, 139.48, 142.79; ²⁹Si NMR (DCCl₃, 79 MHz): δ -80.06; MS (ESI): m/z 300 (M+Na, 100%), 192 (19), 174 (15); Found: C, 60.60; H, 6.91. Calc. for C₁₄H₁₉NO₃Si: C, 60.62; H, 6.90%.

5.3. (E)-1-(4-methylstyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2c)

¹H NMR (DCCl₃, 300 MHz): δ 2.29 (s, 1H, Me), 2.87 (t, *J* = 5.9 Hz, 6H, C*H*₂-N), 3.86 (t, *J* = 5.9 Hz, 6H, C*H*₂-O), 6.27 (d, *J* = 18.8 Hz, 1H, =C*H*-Si), 6.99-7.12 (m, 3H, phenyl fing doublet overlapping with -C*H*=CH-Si), 7.33 (d, *J* = 8.0 Hz, 2H, =CH-C₆*H*₄-Me); ¹³C NMR (DCCl₃, 75 MHz): δ 21.51, 51.35, 58.02, 126.78, 127.76, 129.08, 136.94, 137.04, 142.94; ²⁹Si NMR (DCCl₃, 79 MHz): δ -79.62; MS (ESI): *m*/*z* 330 (M+K, 100%), 314 (M+Na, 49%), 292 (M+H, 19%), 192 (46), 174 (51); Found: C, 61.77; H, 7.20. Calc. for C₁₅H₂₁NO₃Si: C, 61.82; H, 7.26%.

5.4. (E)-1-(4-fluorostyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2d)

¹H NMR (DCCl₃, 300 MHz): δ 2.87 (t, J = 5.9 Hz, 6H, CH₂-N), 3.86 (t, J = 5.9 Hz, 6H, CH₂-O), 6.24 (d, J = 18.8 Hz, 1H, =CH-Si), 6.92 (t, J = 8.7 Hz, 2H, =CH-C₆H₄-F), 7.06 (d, J = 18.9 Hz, 1H, -CH=CH-Si); 7.39 (dd, J = 8.5, 5.7 Hz, 2H, =CH-C₆H₄-F); ¹³C NMR (DCCl₃, 75 MHz): δ 51.13, 57.75, 114.96 (d, ² J_{C-F} = 21.4 Hz), 128.01 (d, ³ J_{C-F} = 8 Hz), 128.88, 135.78, 141.42, 162.22 (d, ¹ J_{C-F} = 245.2 Hz); ²⁹Si NMR (DCCl₃, 79 MHz): δ -80.43; MS (ESI): m/z 334 (M+K, 30%), 318 (M+Na, 100%), 192 (16), 174 (22), 150 (; Found: C, 56.89; H, 6.10. Calc. for C₁₄H₁₈FNO₃Si: C, 56.93; H, 6.14%. 5.5. (E)-1-(4-chlorostyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2e)

¹H NMR (DCCl₃, 300 MHz): δ 2.87 (t, J = 5.9 Hz, 6H, CH₂-N), 3.86 (t, J = 5.9 Hz, 6H, CH₂-O), 6.31 (d, J = 18.8 Hz, 1H, =CH-Si), 7.05 (d, J = 18.8 Hz, 1H, -CH=CH-Si), 7.20 (d, J = 8.5 Hz, 2H, =CH-C₆H₄-Cl), 7.35 (d, J = 8.4 Hz, 2H, =CH-C₆H₄-Cl); ¹³C NMR (DCCl₃, 75 MHz): δ 51.12, 57.71, 127.80, 128.31, 130.19, 132.55, 138.08, 141.24; ²⁹Si NMR (DCCl₃, 79 MHz): δ -80.89; MS (ESI): m/z 350 (M+K, 42%), 334 (M+Na, 100%), 242 (8), 192 (29), 174 (21); Found: C, 53.90; H, 5.79. Calc. for C₁₄H₁₈CINO₃Si: C, 53.92; H, 5.82%.

5.6. (E)-1-(4-bromostyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2f)

¹H NMR (DCCl₃, 300 MHz): δ 2.88 (t, J = 5.8 Hz, 6H, CH₂-N), 3.86 (t, J = 5.8 Hz, 6H, CH₂-O), 6.33 (d, J = 18.8 Hz, 1H, =CH-Si), 7.03 (d, J = 18.8 Hz, 1H, -CH=CH-Si), 7.29 (d, J = 8.5 Hz, 2H, =CH-C₆H₄-Br), 7.36 (d, J = 8.4 Hz, 2H, =CH-C₆H₄-Br); ¹³C NMR (DCCl₃, 75 MHz): δ 51.11, 57.71, 120.82, 128.17, 130.38, 131.26, 138.51, 141.30; ²⁹Si NMR (DCCl₃, 79 MHz): δ -80.89; MS (ESI): *m/z* 395 (M+K, 100%), 380 (M+Na, 49%), 353 (13), 192 (36), 174 (30); Found: C, 47.21; H, 5.11. Calc. for C₁₄H₁₈BrNO₃Si: C, 47.20; H, 5.09%.

5.7. (E)-1-(4-methoxystyryl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2g)

¹H NMR (DCCl₃, **300** MHz): δ 2.86 (t, *J* = 5.8 Hz, 6H, CH₂-N), 3.77 (s, 3H, OMe), 3.85 (t, *J* = 5.8 Hz, 6H, CH₂-O), 6.17 (d, *J* = 18.8 Hz, 1H, =CH-Si), 6.78 (d, *J* = 8.5 Hz, 2H, =CH-C₆H₄-OMe), 7.06 (d, *J* = 18.9 Hz, 1H, -CH=CH-Si), 7.37 (d, *J* = 8.5 Hz, 2H, =CH-C₆H₄-OMe); ¹³C NMR (DCCl₃, 75 MHz): δ 51.16, 55.29, 57.83, 113.54, 126.16, 127.79, 132.57, 142.3, 158.95; ²⁹Si NMR (DCCl₃, 79 MHz): δ -79.39; MS (ESI): *m/z* 346 (M+K, 14%), 330 (M+Na, 100%), 308 (M+H, 57%), 192 (26), 174 (34); Found: C, 58.59; H, 6.90. Calc. for C₁₅H₂₁NO₄Si: C, 58.61; H, 6.89%.

5.8. (E)-1-(2-([1,1'-biphenyl]-4-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2h)

¹H NMR (DCCl₃, 300 MHz): δ 2.82 (t, J = 5.8 Hz, 6H, CH₂-N), 3.81 (t, J = 5.8 Hz, 6H, CH₂-O), 6.33 (d, J = 18.9 Hz, 1H, =CH-Si), 7.09 (d, J = 18.8 Hz, 1H, -CH=CH-Si), 7.18-7.59 (m, 9H, Ph-C₆H₄-); ¹³C NMR (DCCl₃, 75 MHz): δ 51.16, 57.80, 126.85, 126.99, 127.08, 128.77, 129.30, 138.69, 139.66, 141.16, 142.25; ²⁹Si NMR (DCCl₃, 79 MHz): δ -80.07; MS (ESI): m/z 392 (M+K, 7%), 376 (M+Na, 100%), 354 (M+H, 18%), 192 (70), 174 (56); Found: C, 67.93; H, 6.55. Calc. for C₂₀H₂₃NO₃Si: C, 67.96; H, 6.56%.

5.9. (E)-1-(2-(naphthalen-2-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2i)

¹H NMR (DCCl₃, 300 MHz): δ 2.89 (t, J = 5.8 Hz, 6H, CH₂-N), 3.89 (t, J = 5.7 Hz, 6H, CH₂-O), 6.48 (d, J = 18.8 Hz, 1H, =CH-Si), 7.24-7.84 (m, 8H, naphtalene ring and -CH=CH-Si which is overlapped by chloroform signal); ¹³C NMR (DCCl₃, 75 MHz): δ 51.13, 57.77, 124.17, 125.42, 125.80, 126.54, 142.75, 127.60, 127.67, 128.24, 129.70, 133.11, 133.76, 137.11, 142.75; ²⁹Si NMR (DCCl₃, 79 MHz): δ -80.32; MS (ESI): m/z 350 (M+Na, 100%), 192 (28), 174 (17); Found: C, 66.06; H, 6.43. Calc. for C₁₈H₂₁NO₃Si: C, 66.02; H, 6.46%.

5.10. (E)-1-(2-(pyridin-4-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2j)

¹H NMR (DCCl₃, 300 MHz): δ 2.83 (t, J = 5.9 Hz, 6H, CH₂-N), 3.80 (t, J = 5.7 Hz, 6H, CH₂-O), 6.54 (d, J 18.8 Hz, 1H, =C*H*-Si), 6.96 (d, J = 18.8 Hz, 1H, = -CH=CH-Si), 7.12 (d, J = 5.6 Hz, 2H, =CH-C₅H₄N), 8.39 (d, J = 5.5 Hz, 2H, =CH-C₅H₄N) ; ¹³C NMR (DCCl₃, **75 MHz):** δ 51.08, 57.59, 121.11, 135.74, 139.84, 146.66, 149.83; ²⁹Si NMR (DCCl₃, 79 MHz): δ -82.44; MS (ESI): m/z 301 (M+Na, 22%), 279 (M+H, 100%); Found: C, 56.06; H, 6.47. Calc. for C13H18N2O3Si: C, 56.09; H, 6.52%.

5.11. (E)-1-(2-(9H-carbazol-9-yl)vinyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (2k)

¹H NMR (DCCl₃, 300 MHz): δ 2.82 (t, J = 5.8 Hz, 6H, CH₂-N), 3.85 (t, J = 5.7 Hz, 6H, CH₂-O), 5.92 (d, J = 16.8 Hz, 1H, =CH-Si), 7.22 (*pseudo* t, 2H, Ar), 7.41 (*pseudo* t, 2H, Ar), 7.64 (d, J = 16.8 Hz, 1H, -CH=CH-Si), 7.81 (d, J = 8.2 Hz, 2H, Ar), 8.02 (d, J = 7.6 Hz, 1H, Ar); ¹³C NMR (DCCl₃, 75 MHz): δ 51.04, 57.70, 111.48, 113.93, 119.87, 120.05, 123.88, 125.87, 133.39, 139.69; ²⁹Si NMR (DCCl₃, 79 MHz): δ -79.68; MS (ESI): *m*/*z* 405 (M+K, 13%), 389 (M+Na, 19%), 367 (M+H, 88%), 192 (99), 174 (100); Found: C, 65.54; H, 6.03. Calc. for C₂₀H₂₂N₂O₃Si: C, 65.55; H, 6.05%.

5.12. (E)-1,2-bis(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecan-1-yl)ethene (2b)

¹**H NMR (DCCl₃, 300 MHz)**: δ 2.67–2.92 (m, 6H, C*H*₂-N), 3.67-3.92 (m, 6H, C*H*₂-O), 6.58 (s, 2H, =C*H*-Si); Found: C, 44.87; H, 6.98. Calc. for C₁₄H₂₆N₂O₆Si₂: C, 44.90; H, 7.00%.

5.13. Ruthenium silatranyl complex (3)

¹H NMR (DCCl₃, 300 MHz): δ 2.54 (bs, 6H), 3.25 (bs, 6H), 7.74 – 7.10 (m, 30H); ¹³C NMR (DCCl₃, 75 MHz): δ 128.01 (t, *J* = 4.9 Hz), 129.74, 134.90 (t, *J* = 5.7 Hz); ³¹P NMR (DCCl₃, 162 MHz): δ 37.35; IR: v(CO): 1922 cm⁻¹; MS (ESI): *m*/z 828 (M-Cl, 100%), 655 (15), 579 (6); Found: C, 44.87; H, 6.98. Calc. for C₁₄H₂₆N₂O₆Si₂: C, 44.90; H, 7.00%.

6. NMR Spectra

h storal a statisticzy obsiliation data	ununthionadora kontraditeratista polisi	nindadin (anyana) (anyani (anyani) (anyani	nuunimiyeeneenuliigh	harlandan alaya ku yana yana yana yana yana yana yana yan	udallah Mparanjanya	wilifeed/downinit/indep/d	loladadalada	Hulomininini ulun	Anningananana	rilliondauib.	MANARAN TANI AMAN	How month from the first	no na mana manana mana mana	alan waan <mark>alan a</mark>	n Manintan Manada Manaya (huyopiti Maladahanan	ughafhanipalpalpalpalpalpalpal	Pupulinanti
				ł	1													
										11.								
				1								- 57	51					

																· · · · · · · · · ·	T
100	80	60	40	20	0	-20	-40	-60	-80	-100	-130	-160	-190	-220	-250	-280	

WW

+																
100	80	60	40	20	0	-20	-40	-60	-80	-100	-130	-160	-190	-220	-250	-280

250	230	210	190	170	150	130	110	90	80	70	60 5	50 40	30	20	10	0	-10	-20	-30	-40	-50	-60

										<u>, , , , , , , , , , , , , , , , , , , </u>		· · · · · · ·				· · · · · · · · ·	Τ
100	80	60	40	20	0	-20	-40	-60	-80	-100	-130	-160	-190	-220	-250	-280	

- making pangang bahaka mana kalenda kalenda kalenda kalenda kalenda kalenda kalendara kalendara kalendara kale

		-1 -1 -1						· · · ·		, , , , ,		1 1 1 1	 			
100	80	60	40	20	0	-20	-40	-60	-80	-100	-130	-160	-190	-220	-250	-280

	CI Ru-Si OC'''/ / Ph ₃ P 0
Ph ₃ P=O	

140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100