Electronic Supplementary Information

The Structural Diversity of Halogen-centered Secondary Building Units: Two New Mixed-metal Borate Halides with Deep-Ultraviolet Cut-Off Edges

Miriding Mutailipu,^{a,b} Min Zhang^{*a} Yanna Chen^{a,b}, Xiaoquan Lu^c and Shilie Pan^{*a}

^a Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences; Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China

^b University of the Chinese Academy of Sciences, Beijing 100049, China

°State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Chaoyang

District, North Third Ring Road 15, Beijing 100029, China

*Corresponding authors, E-mails: zhangmin@ms.xjb.ac.cn; slpan@ms.xjb.ac.cn

AtomsxyzS.O.F $U_{eq}(Å^2)$ BVSBa(1)1.00000.2777(1)0.250010.021(1)2.067Ba(2)1.0948(1)-0.0108(1)0.1714(1)10.017(1)2.187Ba(3)0.8779(1)0.5006(1)-0.0010(1)10.028(1)2.338Ba(5)0.7308(1)0.2202(2)0.2351(1)0.50.025(1)-Na(1)0.7308(1)0.2202(2)0.2351(1)0.50.025(1)-Mg(1)1.1169(3)0.4863(4)0.2332(4)10.014(1)2.045B(1)0.9726(12)0.6849(14)-0.0584(13)10.014(4)3.099B(2)1.0693(14)-0.1636(15)-0.0132(15)10.016(4)2.982B(3)1.2520(12)0.6072(14)0.4296(12)10.016(4)2.982B(4)1.1476(13)-0.1518(14)0.3881(14)10.016(4)3.061B(6)1.0825(13)-0.1689(15)0.5067(14)10.016(4)3.062B(6)1.0825(13)-0.1689(15)0.5067(14)10.016(2)2.182O(1)0.9958(8)-0.1184(8)-0.0034(9)10.022(3)2.149O(2)0.7337(8)0.6198(10)-0.0272(8)10.022(3)2.032O(5)0.8285(7)0.1181(9)0.4153(8)10.017(2)2.130O(4)0.7380(8)0.3787(9)-0.0121(9)10.024(3)1.399O(6)0.11367(8)<	```		±				
Ba(1) 1.0000 0.2777(1) 0.2500 1 0.021(1) 2.067 Ba(2) 1.0948(1) -0.0108(1) 0.1714(1) 1 0.017(1) 2.187 Ba(3) 0.8779(1) 0.5006(1) -0.010(1) 1 0.028(1) 2.027 Ba(4) 1.0000 -0.3067(1) 0.2500 1 0.028(1) 2.338 Ba(5) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Na(1) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.0455 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.039 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.016(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.4138(15) 1 0.016(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1	Atoms	x	У	Z	S.O.F	$U_{eq}(Å^2)$	BVS
Ba(2) 1.0948(1) -0.0108(1) 0.1714(1) 1 0.017(1) 2.187 Ba(3) 0.8779(1) 0.5006(1) -0.010(1) 1 0.028(1) 2.027 Ba(4) 1.0000 -0.3067(1) 0.2500 1 0.028(1) 2.338 Ba(5) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Ma(1) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.045 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.039 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.016(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 <td>Ba(1)</td> <td>1.0000</td> <td>0.2777(1)</td> <td>0.2500</td> <td>1</td> <td>0.021(1)</td> <td>2.067</td>	Ba(1)	1.0000	0.2777(1)	0.2500	1	0.021(1)	2.067
Ba(3) 0.8779(1) 0.5006(1) -0.0010(1) 1 0.028(1) 2.027 Ba(4) 1.0000 -0.3067(1) 0.2500 1 0.028(1) 2.338 Ba(5) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Ma(1) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.045 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.109 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.016(4) 2.982 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.021(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 <td>Ba(2)</td> <td>1.0948(1)</td> <td>-0.0108(1)</td> <td>0.1714(1)</td> <td>1</td> <td>0.017(1)</td> <td>2.187</td>	Ba(2)	1.0948(1)	-0.0108(1)	0.1714(1)	1	0.017(1)	2.187
Ba(4) 1.0000 -0.3067(1) 0.2500 1 0.028(1) 2.338 Ba(5) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Na(1) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.045 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.109 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.016(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 3.036 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(2) 2.182 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.027(8) 1 </td <td>Ba(3)</td> <td>0.8779(1)</td> <td>0.5006(1)</td> <td>-0.0010(1)</td> <td>1</td> <td>0.028(1)</td> <td>2.027</td>	Ba(3)	0.8779(1)	0.5006(1)	-0.0010(1)	1	0.028(1)	2.027
Ba(5) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Na(1) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.045 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.109 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.016(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 2.982 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.022(3) 2.182 O(2) 0.7337(8) 0.6198(10) -0.027(8) 1 0.012(2) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) <	Ba(4)	1.0000	-0.3067(1)	0.2500	1	0.028(1)	2.338
Na(1) 0.7308(1) 0.2202(2) 0.2351(1) 0.5 0.025(1) - Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.045 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.109 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.016(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 3.039 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.022(3) 2.149 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9)	Ba(5)	0.7308(1)	0.2202(2)	0.2351(1)	0.5	0.025(1)	-
Mg(1) 1.1169(3) 0.4863(4) 0.2332(4) 1 0.014(1) 2.045 B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.109 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.016(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 3.036 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.022(3) 2.182 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.032 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9)	Na(1)	0.7308(1)	0.2202(2)	0.2351(1)	0.5	0.025(1)	-
B(1) 0.9726(12) 0.6849(14) -0.0584(13) 1 0.014(4) 3.109 B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.014(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 2.982 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.036 B(6) 1.0825(13) -0.1689(15) 0.5067(14) 1 0.018(4) 3.002 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.027(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8)	Mg(1)	1.1169(3)	0.4863(4)	0.2332(4)	1	0.014(1)	2.045
B(2) 1.0693(14) -0.1636(15) -0.0132(15) 1 0.020(4) 3.039 B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.013(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 2.982 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.036 B(6) 1.0825(13) -0.1689(15) 0.5067(14) 1 0.018(4) 3.002 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8) 1 0.017(2) 2.130 O(7) 0.9298(7) 0.1206(9) 0.1029(8)	B(1)	0.9726(12)	0.6849(14)	-0.0584(13)	1	0.014(4)	3.109
B(3) 1.2520(12) 0.6072(14) 0.4296(12) 1 0.013(4) 2.925 B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 2.982 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.036 B(6) 1.0825(13) -0.1689(15) 0.5067(14) 1 0.018(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.023(4) 3.002 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8) 1 0.017(2) 2.133 O(6) 0.11367(8) -0.1681(8) 0.2970(8)	B(2)	1.0693(14)	-0.1636(15)	-0.0132(15)	1	0.020(4)	3.039
B(4) 1.1476(13) -0.1518(14) 0.3881(14) 1 0.016(4) 2.982 B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.036 B(6) 1.0825(13) -0.1689(15) 0.5067(14) 1 0.018(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.023(4) 3.002 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8) 1 0.017(2) 2.130 O(6) 0.11367(8) -0.1681(8) 0.2970(8) 1 0.019(3) 2.031 O(7) 0.9298(7) 0.1206(9) 0.0311(10) <t< td=""><td>B(3)</td><td>1.2520(12)</td><td>0.6072(14)</td><td>0.4296(12)</td><td>1</td><td>0.013(4)</td><td>2.925</td></t<>	B(3)	1.2520(12)	0.6072(14)	0.4296(12)	1	0.013(4)	2.925
B(5) 1.2521(14) 0.3682(14) 0.4138(15) 1 0.016(4) 3.036 B(6) 1.0825(13) -0.1689(15) 0.5067(14) 1 0.018(4) 3.061 B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.023(4) 3.002 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8) 1 0.017(2) 2.130 O(6) 0.11367(8) -0.1681(8) 0.2970(8) 1 0.019(3) 2.031 O(7) 0.9298(7) 0.1206(9) 0.1029(8) 1 0.019(3) 2.031 O(10) 1.0412(8) 0.4052(9) 0.0989(9) 1<	B(4)	1.1476(13)	-0.1518(14)	0.3881(14)	1	0.016(4)	2.982
B(6) $1.0825(13)$ $-0.1689(15)$ $0.5067(14)$ 1 $0.018(4)$ 3.061 $B(7)$ $0.8482(14)$ $0.1227(15)$ $0.1074(17)$ 1 $0.023(4)$ 3.002 $O(1)$ $0.9958(8)$ $-0.1184(8)$ $-0.0034(9)$ 1 $0.016(2)$ 2.182 $O(2)$ $0.7337(8)$ $0.6198(10)$ $-0.0272(8)$ 1 $0.022(3)$ 2.149 $O(3)$ $0.6615(7)$ $0.3532(9)$ $0.0822(9)$ 1 $0.021(3)$ 2.181 $O(4)$ $0.7380(8)$ $0.3787(9)$ $-0.0121(9)$ 1 $0.022(3)$ 2.032 $O(5)$ $0.8285(7)$ $0.1181(9)$ $0.4153(8)$ 1 $0.017(2)$ 2.130 $O(6)$ $0.11367(8)$ $-0.1681(8)$ $0.2970(8)$ 1 $0.019(3)$ 2.031 $O(7)$ $0.9298(7)$ $0.1206(9)$ $0.1029(8)$ 1 $0.019(3)$ 2.031 $O(8)$ $0.9436(8)$ $0.2703(9)$ $0.0311(10)$ 1 $0.024(3)$ 2.139 $O(10)$ $1.0744(8)$ $-0.1683(9)$ $0.4072(8)$ 1 $0.016(2)$ 1.990 $O(11)$ $1.1648(7)$ $0.5850(9)$ $0.3291(11)$ 1 $0.030(3)$ 2.065 $O(13)$ $0.8542(9)$ $0.1363(10)$ $0.1965(10)$ 1 $0.022(3)$ 0.962 $F(1)$ 1.0000 $0.4798(10)$ 0.2500 1 $0.022(3)$ 0.962 $F(2)$ $1.0503(7)$ $0.6000(8)$ $0.1327(7)$ 1 $0.022(3)$ 0.967	B(5)	1.2521(14)	0.3682(14)	0.4138(15)	1	0.016(4)	3.036
B(7) 0.8482(14) 0.1227(15) 0.1074(17) 1 0.023(4) 3.002 O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8) 1 0.017(2) 2.130 O(6) 0.11367(8) -0.1681(8) 0.2970(8) 1 0.019(2) 2.113 O(7) 0.9298(7) 0.1206(9) 0.1029(8) 1 0.019(3) 2.031 O(8) 0.9436(8) 0.2703(9) 0.0311(10) 1 0.024(3) 1.977 O(9) 1.0412(8) 0.4052(9) 0.0989(9) 1 0021(3) 1.987 O(11) 1.1648(7) 0.5850(9) 0.3496(8) 1	B(6)	1.0825(13)	-0.1689(15)	0.5067(14)	1	0.018(4)	3.061
O(1) 0.9958(8) -0.1184(8) -0.0034(9) 1 0.016(2) 2.182 O(2) 0.7337(8) 0.6198(10) -0.0272(8) 1 0.022(3) 2.149 O(3) 0.6615(7) 0.3532(9) 0.0822(9) 1 0.021(3) 2.181 O(4) 0.7380(8) 0.3787(9) -0.0121(9) 1 0.022(3) 2.032 O(5) 0.8285(7) 0.1181(9) 0.4153(8) 1 0.017(2) 2.130 O(6) 0.11367(8) -0.1681(8) 0.2970(8) 1 0.019(2) 2.113 O(7) 0.9298(7) 0.1206(9) 0.1029(8) 1 0.019(3) 2.031 O(8) 0.9436(8) 0.2703(9) 0.0311(10) 1 0.024(3) 1.977 O(9) 1.0412(8) 0.4052(9) 0.0989(9) 1 0024(3) 2.139 O(10) 1.0744(8) -0.1683(9) 0.4072(8) 1 0021(3) 1.987 O(11) 1.1648(7) 0.5850(9) 0.3291(11) 1	B(7)	0.8482(14)	0.1227(15)	0.1074(17)	1	0.023(4)	3.002
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(1)	0.9958(8)	-0.1184(8)	-0.0034(9)	1	0.016(2)	2.182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(2)	0.7337(8)	0.6198(10)	-0.0272(8)	1	0.022(3)	2.149
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(3)	0.6615(7)	0.3532(9)	0.0822(9)	1	0.021(3)	2.181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(4)	0.7380(8)	0.3787(9)	-0.0121(9)	1	0.022(3)	2.032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(5)	0.8285(7)	0.1181(9)	0.4153(8)	1	0.017(2)	2.130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(6)	0.11367(8)	-0.1681(8)	0.2970(8)	1	0.019(2)	2.113
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(7)	0.9298(7)	0.1206(9)	0.1029(8)	1	0.019(3)	2.031
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O(8)	0.9436(8)	0.2703(9)	0.0311(10)	1	0.024(3)	1.977
O(10) 1.0744(8) -0.1683(9) 0.4072(8) 1 0021(3) 1.987 O(11) 1.1648(7) 0.5850(9) 0.3496(8) 1 0.016(2) 1.990 O(12) 1.1730(7) 0.3686(9) 0.3291(11) 1 0.030(3) 2.065 O(13) 0.8542(9) 0.1363(10) 0.1965(10) 1 0.027(3) 2.111 O(14) 0.9056(8) 0.7293(9) -0.0468(9) 1 0.024(3) 1.933 F(1) 1.0000 0.4798(10) 0.2500 1 0.022(3) 0.962 F(2) 1.0503(7) 0.6000(8) 0.1327(7) 1 0.027(2) 0.907 F(3) 1.2190(7) 0.5045(11) 0.2065(8) 1 0.044(3) 1.036	O(9)	1.0412(8)	0.4052(9)	0.0989(9)	1	0024(3)	2.139
O(11) 1.1648(7) 0.5850(9) 0.3496(8) 1 0.016(2) 1.990 O(12) 1.1730(7) 0.3686(9) 0.3291(11) 1 0.030(3) 2.065 O(13) 0.8542(9) 0.1363(10) 0.1965(10) 1 0.027(3) 2.111 O(14) 0.9056(8) 0.7293(9) -0.0468(9) 1 0.024(3) 1.933 F(1) 1.0000 0.4798(10) 0.2500 1 0.022(3) 0.962 F(2) 1.0503(7) 0.6000(8) 0.1327(7) 1 0.027(2) 0.907 F(3) 1.2190(7) 0.5045(11) 0.2065(8) 1 0.044(3) 1.036	O(10)	1.0744(8)	-0.1683(9)	0.4072(8)	1	0021(3)	1.987
O(12) 1.1730(7) 0.3686(9) 0.3291(11) 1 0.030(3) 2.065 O(13) 0.8542(9) 0.1363(10) 0.1965(10) 1 0.027(3) 2.111 O(14) 0.9056(8) 0.7293(9) -0.0468(9) 1 0.024(3) 1.933 F(1) 1.0000 0.4798(10) 0.2500 1 0.022(3) 0.962 F(2) 1.0503(7) 0.6000(8) 0.1327(7) 1 0.027(2) 0.907 F(3) 1.2190(7) 0.5045(11) 0.2065(8) 1 0.044(3) 1.036	O(11)	1.1648(7)	0.5850(9)	0.3496(8)	1	0.016(2)	1.990
O(13)0.8542(9)0.1363(10)0.1965(10)10.027(3)2.111O(14)0.9056(8)0.7293(9)-0.0468(9)10.024(3)1.933F(1)1.00000.4798(10)0.250010.022(3)0.962F(2)1.0503(7)0.6000(8)0.1327(7)10.027(2)0.907F(3)1.2190(7)0.5045(11)0.2065(8)10.044(3)1.036	O(12)	1.1730(7)	0.3686(9)	0.3291(11)	1	0.030(3)	2.065
O(14)0.9056(8)0.7293(9)-0.0468(9)10.024(3)1.933F(1)1.00000.4798(10)0.250010.022(3)0.962F(2)1.0503(7)0.6000(8)0.1327(7)10.027(2)0.907F(3)1.2190(7)0.5045(11)0.2065(8)10.044(3)1.036	O(13)	0.8542(9)	0.1363(10)	0.1965(10)	1	0.027(3)	2.111
F(1)1.00000.4798(10)0.250010.022(3)0.962F(2)1.0503(7)0.6000(8)0.1327(7)10.027(2)0.907F(3)1.2190(7)0.5045(11)0.2065(8)10.044(3)1.036	O(14)	0.9056(8)	0.7293(9)	-0.0468(9)	1	0.024(3)	1.933
F(2)1.0503(7)0.6000(8)0.1327(7)10.027(2)0.907F(3)1.2190(7)0.5045(11)0.2065(8)10.044(3)1.036	F(1)	1.0000	0.4798(10)	0.2500	1	0.022(3)	0.962
F(3) 1.2190(7) 0.5045(11) 0.2065(8) 1 0.044(3) 1.036	F(2)	1.0503(7)	0.6000(8)	0.1327(7)	1	0.027(2)	0.907
	F(3)	1.2190(7)	0.5045(11)	0.2065(8)	1	0.044(3)	1.036

Table S1. Atomic coordinates equivalent isotropic displacement parameters and bond valence Sum (BVS) for compound I.

Atoms	x	у	z	U _{eq} (Ų)	BVS
Ba(1)	0.0021(1)	0.4674(1)	0.8031(1)	0.012(1)	2.053
Ba(2)	0.1674(1)	0.2098(1)	1.0312(1)	0.011(1)	2.322
Na(1)	-0.5000	0.5000	1.0000	0.017(1)	1.034
B(1)	0.4992(7)	0.5089(4)	0.7424(4)	0.011(1)	3.094
B(2)	-0.0396(7)	0.2183(4)	1.3000(4)	0.009(1)	3.007
B(3)	0.6897(7)	0.2730(4)	0.9726(4)	0.010(1)	3.058
B(4)	0.3038(7)	0.3096(4)	1.2864(4)	0.011(1)	3.006
B(5)	0.1414(7)	0.2009(4)	0.6950(4)	0.009(1)	3.005
O(1)	0.4336(4)	0.2603(2)	1.1979(2)	0.008(1)	2.088
O(2)	-0.0934(4)	0.6957(2)	0.7482(2)	0.010(1)	2.089
O(3)	0.3571(4)	0.5682(2)	0.8007(2)	0.014(1)	2.154
O(4)	0.0065(5)	0.1084(2)	1.2354(3)	0.019(1)	1.977
O(5)	0.5052(4)	0.3017(2)	0.9280(2)	0.010(1)	2.122
O(6)	0.2528(4)	0.2510(2)	0.7929(2)	0.012(1)	1.980
O(7)	-0.2589(4)	0.2708(2)	1.0871(2)	0.013(1)	1.954
O(8)	-0.1583(4)	0.2559(3)	0.8976(2)	0.012(1)	2.235
O(9)	-0.3512(4)	0.5670(2)	0.6909(3)	0.017(1)	1.971
F(1)	-0.1833(3)	0.5584(2)	0.9777(2)	0.017(1)	0.999
Br(1)	0.0000	0.5000	0.5000	0.024(1)	0.800

 Table S2. Atomic coordinates equivalent isotropic displacement parameters and bond valence Sum (BVS) for compound II.

		-	
Ba(1)-F(1)	2.762(14)	Ba(4)-F(1)#9	2.919(14)
Ba(1)-O(12)	2.770(11)	Ba(5)-O(13)	2.663(12)
Ba(1)-O(12)#1	2.770(11)	Ba(5)-O(6)#10	2.679(11)
Ba(1)-O(13)#1	2.868(13)	Ba(5)-O(3)	2.690(12)
Ba(1)-O(13)	2.868(13)	Ba(5)-O(5)	2.728(12)
Ba(1)-O(7)#1	2.872(12)	Ba(5)-F(3)#11	2.971(15)
Ba(1)-O(7)	2.872(12)	Ba(5)-O(12)#1	3.038(13)
Ba(1)-O(8)	2.945(13)	Ba(5)-F(2)#11	3.046(11)
Ba(1)-O(8)#1	2.945(13)	Ba(5)-	3.098(11)
Ba(2)-O(13)#1	2.648(13)	Ba(5)-O(14)#3	3.144(12)
Ba(2)-F(3)#4	2.666(10)	Mg(1)-F(3)	1.953(11)
Ba(2)-O(6)	2.712(11)	Mg(1)-O(11)	2.028(12)
Ba(2)-O(1)	2.714(12)	Mg(1)-O(12)	2.040(13)
Ba(2)-O(1)#5	2.810(12)	Mg(1)-F(2)	2.054(11)
Ba(2)-O(3)#6	2.838(12)	Mg(1)-O(9)	2.074(13)
Ba(2)-O(5)#1	2.862(11)	Mg(1)-F(1)	2.087(5)
Ba(2)-O(7)	2.978(11)	B(1)-O(9)#2	1.34(2)
Ba(2)-O(10)#1	3.238(12)	B(1)-O(14)	1.36(2)
Ba(3)-O(9)	2.664(12)	B(1)-O(8)#2	1.37(2)
Ba(3)-F(3)#2	2.665(10)	B(2)-O(1)	1.44(2)
Ba(3)-O(2)	2.750(12)	B(2)-O(8)#5	1.48(2)
Ba(3)-O(9)#2	2.780(12)	B(2)-O(3)#6	1.48(2)
Ba(3)-O(4)	2.793(11)	B(2)-O(7)#5	1.49(2)
Ba(3)-F(2)	2.853(10)	B(3)-O(11)	1.357(19)
Ba(3)-O(11)#1	2.962(11)	B(3)-O(2)#1	1.383(19)
Ba(3)-F(2)#2	3.124(10)	B(3)-O(5)#13	1.403(18)
Ba(3)-F(1)	3.2657(16)	B(4)-O(6)	1.31(2)
Ba(3)-O(8)	3.284(12)	B(4)-O(10)	1.41(2)
Ba(3)-O(14)	3.286(12)	B(4)-O(2)#15	1.41(2)
Ba(4)-F(2)#8	2.650(10)	B(5)-O(12)	1.28(2)
Ba(4)-F(2)#9	2.650(10)	B(5)-O(4)#1	1.42(2)
Ba(4)-O(6)	2.752(11)	B(5)-O(3)#1	1.42(2)
Ba(4)-O(6)#1	2.752(11)	B(6)-O(10)	1.44(2)

Table S3. Selected bond lengths (Å) for compound I.

Ba(4)-O(11)#9	2.772(10)	B(6)-O(1)#1	1.45(2)
Ba(4)-O(11)#8	2.772(10)	B(6)-O(14)#8	1.49(2)
Ba(4)-O(10)#1	2.780(12)	B(6)-O(5)#16	1.50(2)
Ba(4)-O(10)	2.780(12)	B(7)-O(13)	1.32(2)

	Symmetry transformations used to generate equivalent atom					
#1	-x+2,y,-z+1/2	#11	x-1/2,y-1/2,z			
#2	-x+2,-y+1,-z	#12	x,y+1,z			
#3	x,-y+1,z+1/2	#13	x+1/2,y+1/2,z			
#4	-x+5/2,y-1/2,-z+1/2	#14	-x+5/2,y+1/2,-z+1/2			
#5	-x+2,-y,-z	#15	x+1/2,-y+1/2,z+1/2			
#6	x+1/2,y-1/2,z	#16	-x+2,-y,-z+1			
#7	x,-y,z-1/2	#17	x,-y,z+1/2			
#8	-x+2,y-1,-z+1/2	#18	-x+3/2,-y+1/2,-z			
#9	x,y-1,z	#19	x-1/2,-y+1/2,z-1/2			
#10	x-1/2,y+1/2,z	#20	-x+2,y+1,-z+1/2			
#21	x,-y+1,z-1/2					

Ba(1)-F(1)	2.616(2)	Na(1)-O(5)#1	2.423(3)
Ba(1)-O(3)	2.658(3)	Na(1)-O(3)#3	2.578(3)
Ba(1)-O(2)	2.767(3)	Na(1)-O(3)#1	2.578(3)
Ba(1)-F(1)#1	2.781(2)	B(1)-O(4)#5	1.350(6)
Ba(1)-O(8)	2.885(3)	B(1)-O(9)#6	1.360(5)
Ba(1)-O(9)	2.906(3)	B(2)-O(6)#8	1.442(5)
Ba(1)-O(1)#2	2.911(3)	B(2)-O(2)#1	1.454(5)
Ba(1)-O(6)	3.008(3)	B(2)-O(4)	1.501(5)
Ba(2)-O(1)	2.647(3)	B(2)-O(5)#8	1.510(5)
Ba(2)-F(1)#1	2.665(2)	B(3)-O(7)#6	1.350(5)
Ba(2)-O(8)	2.690(3)	B(3)-O(5)	1.370(5)
Ba(2)-O(5)	2.806(3)	B(3)-O(8)#6	1.373(5)
Ba(2)-O(2)#1	2.818(3)	B(4)-O(2)#1	1.461(5)
Ba(2)-O(6)	2.856(3)	B(4)-O(9)#1	1.473(5)
Ba(2)-O(4)	2.865(3)	B(4)-O(1)	1.476(5)
Ba(2)-O(7)	3.045(3)	B(4)-O(8)#9	1.497(5)
Ba(2)-Br(1)#4	3.3171(4)	B(5)-O(6)	1.452(5)
Na(1)-F(1)#7	2.259(2)	B(5)-O(7)#5	1.466(5)
Na(1)-F(1)	2.259(2)	B(5)-O(1)#2	1.471(5)
Na(1)-O(5)#3	2.423(3)	B(5)-O(3)#4	1.524(5)

Table S4. Selected bond lengths (Å) for compound II.

Symmetry transformations used to generate equivalent atom					
#1	-x,-y+1,-z+2	#7	-x-1,-y+1,-z+2		
#2	x-1/2,-y+1/2,z-1/2	#8	x-1/2,-y+1/2,z+1/2		
#3	x-1,y,z	#9	x+1/2,-y+1/2,z+1/2		
#4	-x+1/2,y-1/2,-z+3/2	#10	-x+1/2,y+1/2,-z+3/2		
#5	x+1/2,-y+1/2,z-1/2	#11	-x,-y+1,-z+1		
#6	x+1,y,z				

No.	Molecular Formula	Space Group	X-centered SBUs	Configuration Type
1	Te ₃ BO ₃ F ₁₅	<i>P</i> 6 ₃ / <i>m</i> (176)	Fte	linear configuration
2	Al ₆ (BO ₃) ₅ F ₃	<i>P</i> 6 ₃ / <i>m</i> (176)	FAl ₂	linear configuration
3	Be ₂ (BO ₃)F	<i>C</i> 2/ <i>c</i> (15)	FBe ₂	linear configuration
4	Be ₂ (BO ₃)F	<i>C</i> 2 (5)	FBe ₂	linear configuration
5	Be ₂ (BO ₃)F	$R^{3}c$ (167)	FBe ₂	linear configuration
6	Cs ₁₈ Mg ₆ (B ₅ O ₁₀) ₃ (B ₇ O ₁₄) ₂ F	<i>C</i> 2/ <i>c</i> (15)	FMg ₂	linear configuration
7	Rb ₁₈ Mg ₆ (B ₅ O ₁₀) ₃ (B ₇ O ₁₄) ₂ F	<i>C</i> 2/ <i>c</i> (15)	FMg ₂	linear configuration
8	Li(B ₆ O ₉)F	$Pna2_{1}(33)$	FLiB	linear configuration
9	Li ₂ B ₃ O ₄ F ₃	$P2_{1}2_{1}2_{1}$ (19)	FLiB	linear configuration
10	Li ₂ B ₆ O ₉ F ₂	<i>C</i> c (9)	FLiB	linear configuration
11	Cm ₂ B ₁₄ O ₂₉ Cl	$P2_{1}/C(14)$	ClCmB	linear configuration
12	$Er_2(B_2O_5)Cl_2$	<i>Pbam</i> (55)	ClEr ₂	linear configuration
13	Pb ₆ B ₃ O ₁₀ F	<i>Pbcm</i> (57)	FPb ₄	planar configuration
14	Ca ₃ Be ₆ B ₅ O ₁₆ F	<i>P</i> 6 ₃ / <i>m</i> (176)	FCa ₃	planar configuration
15	Mg ₅ (BO ₃) ₃ F	$Pna2_{1}(33)$	FMg ₃	planar configuration
16	Mg ₅ (BO ₃) ₃ F	<i>Pnma</i> (62)	FMg ₃	planar configuration
17	Tb ₂ (BO ₃)F ₃	$P2_{1}/C(14)$	FTb ₃	planar configuration
18	BaZn(BO ₃)F	P ⁶ (174)	FZn ₂ Ba ₃	spatial configuration
19	Ca ₃ Na ₄ LiBe ₄ B ₁₀ O ₂₄ F	R ³ (148)	FNa ₃ LiBe	spatial configuration
20	Cd ₃ LiNa ₄ Be ₄ B ₁₀ O ₂₄ F	R ³ (148)	FNa ₃ LiBe	spatial configuration
21	CdZn ₂ KB ₂ O ₆ F	P ³ 1 <i>c</i> (163)	FZn ₂ Cd ₃	spatial configuration
22	K ₃ Ba ₃ Li ₂ Al ₄ B ₆ O ₂₀ F	P ⁶ 2c (190)	FK ₃ Li ₂	spatial configuration
23	KBOF ₂	$P2_{1}/C(14)$	FK ₄ B	spatial configuration
24	KCaBe ₂ (BO ₃) ₂ F	P ³ 1 <i>c</i> (163)	FK ₃ Be ₂	spatial configuration
25	KSrBe ₂ (BO ₃) ₂ F	<i>P</i> 6 ₃ / <i>m</i> (176)	FK ₃ Be ₂	spatial configuration
26	Li ₃ Ca ₉ (BO ₃) ₇ (LiF) ₂	<i>P</i> 1 (1)	FCa ₃ Li ₂	spatial configuration
27	Li ₆ RbB ₂ O ₆ F	<i>Pnma</i> (62)	FRb ₃ Li ₂	spatial configuration
28	Pb ₃ O(BO ₃)F	<i>Pbcm</i> (57)	FPb ₅	spatial configuration
29	Sr ₃ LiNa ₄ Be ₄ B ₁₀ O ₂₄ F	R ³ (148)	FNa ₃ LiBe	spatial configuration
30	BaAl(BO ₃)F ₂	P62c (190)	FBa ₃ Al	spatial configuration
31	$Ba_3Zn_2B_3O_9F$	<i>Pnma</i> (62)	FBa ₄	spatial configuration
32	$Ba_5(B_2O_5)_2F_2$	<i>C</i> 2/ <i>c</i> (15)	FBa ₄	spatial configuration
33	$Ba_5Zn_2B_4O_{12}F_2$	<i>C</i> 2/ <i>c</i> (15)	FBa ₄	spatial configuration
34	BaAl(BO ₃)F ₂	<i>P</i> 6 ₃ / <i>m</i> (176)	FBa ₃ Al	spatial configuration
35	BaGa(BO ₃)F ₂	<i>P</i> 6 ₃ / <i>m</i> (176)	FBa ₃ Ga	spatial configuration
36	Ca ₅ (BO ₃) ₃ F	<i>C</i> m (8)	FCa ₄	spatial configuration
37	Cd ₈ B ₅ O ₁₅ F	<i>Fd</i> ³ <i>m</i> (227)	FCd ₃ B	spatial configuration
38	$CsBe_2(BO_3)F_2$	<i>C</i> 2 (5)	FCs ₃ Be	spatial configuration
39	CsBe ₂ BO ₃ F ₂	R32 (155)	FCs ₃ Be	spatial configuration

Table S5.The basic information of the anhydrous halogen-containing borates.

40	$Dy_4B_4O_{11}F_2$	<i>C</i> 2/ <i>c</i> (15)	FDy ₄	spatial configuration
41	$Eu_4B_4O_{11}F_2$	<i>C</i> 2/ <i>c</i> (15)	FEu ₄	spatial configuration
42	$Gd_4B_4O_{11}F_2$	$P2_1/C(14)$	FGd ₄	spatial configuration
43	KBe ₂ (BO ₃)F ₂	R32 (155)	FK ₃ Be	spatial configuration
44	KBe ₂ (BO ₃)F ₂	$R^{3}c$ (167)	FK ₃ Be	spatial configuration
45	Li _{0.8} Mg _{2.1} B ₂ O ₅ F	$P2_1/C(14)$	FMg ₂ Li ₂	spatial configuration
46	Mg ₂ (BO ₃)F	<i>Pnma</i> (62)	FMg ₄	spatial configuration
47	NaSr ₃ Be ₃ (BO ₃) ₃ F ₄	R3m (160)	FSr ₃ Na, FBe ₃ Na	spatial configuration
48	Na ₃ B ₃ O ₃ F ₆	<i>C</i> 2/ <i>c</i> (15)	FNa ₃ B	spatial configuration
49	NaCaBe ₂ (BO ₃) ₂ F	<i>C</i> c (9)	FBe ₂ Na ₂	spatial configuration
50	$Nd_4(B_4O_{11})F_2$	<i>C</i> 2/ <i>c</i> (15)	FNd ₄	spatial configuration
51	Nd ₆ Li(BO ₃) ₃ O ₄ F ₂	<i>C</i> 2/ <i>c</i> (15)	FNd4	spatial configuration
52	Pb ₆ AlB ₂ O ₇ F ₇	<i>Cmca</i> (64)	FPb ₄ , FPb ₃ Al	spatial configuration
53	$Pr_4(B_4O_{11})F_2$	<i>C</i> 2/ <i>c</i> (15)	FPr ₄	spatial configuration
54	Pr ₄ B ₃ O ₁₀ F	$P^{\overline{1}}(2)$	FPr ₄	spatial configuration
55	RbBe ₂ (BO ₃)F ₂	<i>C</i> 2 (5)	FRb ₃ Be	spatial configuration
56	RbBe ₂ (BO ₃)F ₂	<i>R</i> ³ <i>c</i> (167)	FRb ₃ Be	spatial configuration
57	TlBe ₂ BO ₃ F ₂	R32 (155)	FTl ₃ Be	spatial configuration
58	$Ba_3Sr_4(BO_3)_3F_5$	<i>P</i> 6 ₃ <i>mc</i> (186)	FBa ₃ , FSr ₄ , FSr ₃	spatial configuration
59	$La_4B_4O11F_2$	$P2_1/C(14)$	FLa ₄	spatial configuration
60	Pb ₂ BO ₃ F	<i>P</i> 6 ₃ / <i>m</i> (176)	FPb ₃ , FPb ₆	spatial configuration
61	$Ba_3B_6O_{11}F_2$	P2 ₁ (4)	FBa ₃	spatial configuration
62	BaCa(BO ₃)F	P ⁶ 2m (189)	FCa ₂ Ba	spatial configuration
63	BiB ₂ O ₄ F	<i>P</i> 3 ₂ (145)	FBi ₂ B	spatial configuration
64	Ce(B ₂ O ₄)F	<i>Pbca</i> (61)	FCe ₃	spatial configuration
65	Eu ₅ (BO ₃) ₃ F	<i>Pnma</i> (62)	FEu ₃	spatial configuration
66	LaB ₂ O ₄ F	<i>Pbca</i> (61)	FLa ₃	spatial configuration
67	Mg ₃ (BO ₃)F ₃	<i>P</i> 6 ₃ / <i>m</i> (176)	FMg ₃	spatial configuration
68	NaBe ₂ (BO ₃)F ₂	<i>C</i> 2 (5)	FNa ₂ , FNa ₂ Be	spatial configuration
69	$Sr_3B_6O_{11}F_2$	P2 ₁ (4)	FSr ₃	spatial configuration
70	Sr ₅ (BO ₃) ₃ F	<i>Pnma</i> (62)	FSr ₃	spatial configuration
71	LiBa ₁₂ (BO ₃) ₇ F ₄	<i>I4/mcm</i> (140)	FBa ₄ Li ₂	spatial configuration
72	NaBa ₁₂ (BO ₃) ₇ F ₄	<i>I4/mcm</i> (140)	FBa ₅ Na	spatial configuration
73	Pb ₈ (B ₉ O ₂₁)F	$R^{\bar{3}}c$ (167)	FPb ₆	spatial configuration
74	BaMg(BO ₃)F	<i>C</i> c (9)	FMg ₂ Ba ₂ , FMg ₂ Ba ₃	spatial configuration
75	Ca ₂ (BO ₃)Cl	$P2_{1}/C(14)$	ClCa ₅	spatial configuration
76	Dy ₄ O ₄ (BO ₃)Cl	$P2_1/C(14)$	ClDy ₅	spatial configuration
77	Er ₄ O ₄ (BO ₃)Cl	$P2_{1}/C(14)$	ClEr ₅	spatial configuration
78	Eu ₄ O ₄ (BO ₃)Cl	$P2_{1}/C(14)$	ClEu ₅	spatial configuration
79	Gd ₄ O ₄ (BO ₃)Cl	$P2_{1}/C(14)$	ClDg ₅	spatial configuration
80	Ho ₄ O ₄ (BO ₃)Cl	$P2_{1}/C(14)$	ClHo ₅	spatial configuration
81	Tb ₄ O ₄ (BO ₃)Cl	$P2_{1}/C(14)$	ClDg ₅	spatial configuration
82	Tm ₄ O ₄ (BO ₃)Cl	$P2_{1}/C(14)$	ClHo ₅	spatial configuration

83	Ba ₂ (BO ₃)Br	<i>P</i> ³ <i>m</i> 1 (164)	BrBa ₅	spatial configuration
84	(Ba ₄ Ga ₂ B ₈ O ₁₈ Cl ₂)(NaCl) _{0.88}	P4 ₂ nm (102)	ClBa ₄ Na	spatial configuration
85	NaBa4(GaB4O9)2Cl3	P4 ₂ nm (102)	ClBa ₄ Na, ClBa ₄	spatial configuration
86	NaBa ₄ Al ₂ B ₈ O ₁₈ Cl ₃	P4 ₂ nm (102)	ClBa ₄ Na	spatial configuration
87	NaBa ₄ (AlB ₄ O ₉) ₂ Br ₃	P4 ₂ nm (102)	BrNaBa ₄	spatial configuration
88	NaBa4(GaB4O9)2Br3	P4 ₂ nm (102)	BrBa ₄ Na, ClBa ₄	spatial configuration
89	Ba ₂ AlB ₄ O ₉ Cl	P4 ₂ nm (102)	ClBa ₄ , ClBa ₆	spatial configuration
90	Ba ₂ GaB ₄ O ₉ Cl	P4 ₂ nm (102)	ClBa ₄ , ClBa ₆	spatial configuration
91	Li ₅ B ₇ O _{12.5} Cl	F23 (196)	ClLi ₄ , ClLi ₆	spatial configuration
92	Ba ₂ B ₅ O ₉ Cl	Pnn2 (34)	ClBa ₄	spatial configuration
93	Ce ₃ (BO ₃) ₂ Cl ₃	<i>P</i> 6 ₃ / <i>m</i> (176)	ClCe ₄	spatial configuration
94	Eu ₂ (B ₅ O ₉)Cl	Pnn2 (34)	ClEu ₄	spatial configuration
95	KZn ₂ (BO ₃)Cl ₂	R32 (155)	ClK ₃ Zn	spatial configuration
96	Pb ₂ (B ₅ O ₉)Cl	Pnn2 (34)	ClPb ₄	spatial configuration
97	Pb ₆ B ₃ O ₁₀ Cl	<i>Pbcm</i> (57)	ClPb ₄	spatial configuration
98	Sr ₂ (B ₅ O ₉)Cl	Pnn2 (34)	ClSr ₄	spatial configuration
99	Ca ₂ (B ₅ O ₉)Br	Pnn2 (34)	BrCa ₄	spatial configuration
100	$Eu_2(B_5O_9)Br$	Pnn2 (34)	BrEu ₄	spatial configuration
101	Pb ₂ (B ₅ O ₉)Br	Pnn2 (34)	BrPb ₄	spatial configuration
102	Pb ₆ B ₃ O ₁₀ Br	<i>Pbcm</i> (57)	BrPb ₄	spatial configuration
103	Ce(BO ₂) ₂ Cl	P ¹ (2)	ClCe ₃	spatial configuration
104	Fe ₃ (B ₇ O ₁₃)Cl	R3c (161)	ClFe ₃	spatial configuration
105	La(BO ₂) ₂ Cl	P ¹ (2)	ClLa ₃	spatial configuration
106	Pr(BO ₂) ₂ Cl	P ¹ (2)	ClPr ₃	spatial configuration
107	Zn ₃ (B ₇ O ₁₃)Cl	R3c (161)	ClZn ₃	spatial configuration
108	Co ₃ (B ₇ O ₁₃)Br	<i>Pca</i> 2 ₁ (29)	BrCo ₃	spatial configuration
109	Fe ₃ B ₇ O ₁₃ Br	R3c (161)	BrFe ₃	spatial configuration
110	Zn ₃ (B ₇ O ₁₃)Br	<i>Pca</i> 2 ₁ (29)	BrZn ₃	spatial configuration
111	Ba ₂ Gd(BO ₃) ₂ Cl	$P2_1/m$ (11)	ClBa ₆	spatial configuration
112	Ba ₂ Ho(BO ₃) ₂ Cl	$P2_1/m$ (11)	ClBa ₆	spatial configuration
113	Ba ₂ Lu(BO ₃) ₂ Cl	$P2_1/m$ (11)	ClBa ₆	spatial configuration
114	Ba ₂ Y(BO ₃) ₂ Cl	$P2_1/m$ (11)	ClBa ₆	spatial configuration
115	Ba ₂ Yb(BO ₃) ₂ Cl	$P2_1/m$ (11)	ClBa ₆	spatial configuration
116	Ba ₅ (BO ₃) ₃ Cl	<i>C</i> 222 ₁ (20)	ClBa ₆	spatial configuration
117	Ba ₇ (BO ₃) ₃ GeO ₄ Cl	<i>Pbam</i> (55)	ClBa ₆	spatial configuration
118	Co ₃ (B ₇ O ₁₃)Cl	<i>R</i> 3 <i>c</i> (161)	ClCo ₆	spatial configuration
119	Cr ₃ (B ₇ O ₁₃)Cl	$F^{\bar{4}}3c$ (219)	ClCr ₆	spatial configuration
120	Cr ₃ B ₇ O ₁₃ Cl	$P^{\bar{4}}2_{1}c(114)$	ClCr ₆	spatial configuration
121	Eu ₅ (BO ₃) ₃ Cl	<i>C</i> 222 ₁ (20)	ClEu ₆	spatial configuration
122	K ₃ (B ₆ O ₁₀)Cl	<i>R</i> 3 <i>m</i> (160)	ClK ₆	spatial configuration
123	Mg ₃ (B ₇ O ₁₃ Cl)	$Pca2_{1}(29)$	ClMg ₆	spatial configuration
124	Mg ₃ (B ₇ O ₁₃ Cl)	$F^{\bar{4}}3c$ (219)	ClMg ₆	spatial configuration
125	Mn ₃ (B ₇ O ₁₃)Cl	$Pca2_{1}(29)$	ClMn ₆	spatial configuration

126	Na ₃ B ₄ O ₇ Cl	P6 ₅ 22 (179)	ClNa ₆	spatial configuration
127	Na ₃ B ₆ O ₁₀ Cl	$P2_{1}2_{1}2_{1}(19)$	ClNa ₆	spatial configuration
128	Ni ₃ (B ₇ O ₁₃)Cl	$Pca2_{1}(29)$	ClNi ₆	spatial configuration
129	Pb ₂ Ba ₃ (BO ₃) ₃ Cl	<i>C</i> 222 ₁ (20)	ClPb ₄ Ba ₂	spatial configuration
130	RbNa2B6O10Cl	$P2_{1}2_{1}2_{1}(19)$	ClNa ₄ Rb ₂	spatial configuration
131	Sr ₅ (BO ₃) ₃ Cl	<i>C</i> 222 ₁ (20)	ClSr ₆	spatial configuration
132	(K _{0.80} Na _{2.20})(B ₆ O ₁₀)Br	<i>Pnma</i> (62)	BrNa ₄ K(Na) ₂	spatial configuration
133	(K _{1.70} Na _{1.30})(B ₆ O ₁₀) Br	<i>Pnma</i> (62)	BrNa ₂ K ₂ K(Na) ₂	spatial configuration
134	$(K_{2.33}Na_{0.67})(B_6O_{10})Br$	R3m (160)	BrK(Na) ₆	spatial configuration
135	(K _{2.87} Na _{0.126})(B ₆ O ₁₀)Br	R3m (160)	BrK(Na) ₆	spatial configuration
136	Ba ₃ (BO ₃)Br ₃	$P^{\overline{1}}(2)$	BrBa ₆	spatial configuration
137	Ba ₅ (BO ₃) ₃ Br	$C222_1(20)$	BrBa ₆	spatial configuration
138	Ba7(BO3)3GeO4Br	<i>Pbam</i> (55)	BrBa ₆	spatial configuration
139	$Cr_3(B_7O_{13})Br$	$F^{\bar{4}}3c$ (219)	BrCr ₆	spatial configuration
140	Cu ₃ (B ₇ O ₁₃)Br	$F^{\bar{4}}3c$ (219)	BrCu ₆	spatial configuration
141	$K_3(B_6O_{10})Br$	R3m (160)	BrK ₆	spatial configuration
142	Mn ₃ (B ₇ O ₁₃)Br	<i>Pca</i> 2 ₁ (29)	BrMn ₆	spatial configuration
143	Mn ₃ (B ₇ O ₁₃)Br	$F^{\bar{4}}3c$ (219)	BrMn ₆	spatial configuration
144	Na ₃ B ₄ O ₇ Br	<i>P</i> 6 ₅ 22 (179)	BrNa ₆	spatial configuration
145	Na ₃ B ₆ O ₁₀ Br	<i>Pnma</i> (62)	BrNa ₆	spatial configuration
146	Ni ₃ (B ₇ O ₁₃)Br	<i>Pca</i> 2 ₁ (29)	BrNi ₆	spatial configuration
147	Pb ₂ Ba ₃ (BO ₃) ₃ Br	<i>C</i> 222 ₁ (20)	BrPb ₄ Ba ₂	spatial configuration
148	RbNa ₂ B ₆ O ₁₀ Br	<i>Pnma</i> (62)	BrNa ₄ Rb ₂	spatial configuration
149	Sr ₅ Br(BO ₃) ₃	<i>C</i> 222 ₁ (20)	BrSr6	spatial configuration
150	Li ₄ (B ₇ O ₁₂)Cl	F23 (196)	ClLi ₄	spatial configuration
151	Li ₄ (B ₇ O ₁₂)Cl	$F^{\bar{4}}3c$ (219)	ClLi ₄	spatial configuration
152	$Pb_2(O_4Pb_8)(BO_3)_3Br_3$	<i>C</i> 2/ <i>c</i> (15)	BrPb ₉	spatial configuration
153	$Pb_2(O_8Pb_{12})(BO_3)_2Br_6$	<i>C</i> 2/ <i>c</i> (15)	BrPb ₉	spatial configuration
154	$Na_{11}B_{21}O_{36}Cl_2$	<i>C</i> 2/ <i>c</i> (15)	ClNa ₈	spatial configuration
155	Pb ₆ Ba ₂ (BO ₃) ₅ Cl	<i>C</i> 2/ <i>m</i> (12)	ClPb ₆ Ba ₂	spatial configuration
156	Na ₁₁ B ₂₁ O ₃₆ Br2	<i>C</i> 2/ <i>c</i> (15)	BrNa ₈	spatial configuration
157	Pb ₆ Ba ₂ (BO ₃)Br	<i>C</i> 2/ <i>m</i> (12)	BrPb ₆ Ba ₂	spatial configuration
158	Pb ₃ B ₆ O ₁₁ F ₂	P2 ₁ (4)	FPb ₂ , FPb ₃	hybrid configuration
159	BaBOF ₃	<i>Pnma</i> (62)	FBBa, FBa ₃ B	hybrid configuration
160	$Gd_2(BO_3)F_3$	$P2_{1}/C(14)$	FGd ₃	hybrid configuration
161	NaBa ₄ (B ₅ O ₉) ₂ F ₂ Cl	$P2_{1}/C(14)$	FBa ₃ Na, ClBa ₄	hybrid configuration
162	$Tm_5(BO_3)_2F_9$	<i>C</i> 2/ <i>c</i> (15)	FTm ₃	hybrid configuration
163	Yb ₅ (BO ₃) ₂ F ₉	<i>C</i> 2/ <i>c</i> (15)	FYb ₃	hybrid configuration
164	Dy ₅ (BO ₃) ₂ F ₉	C2/c (15)	FDy ₃	hybrid configuration
165	$\mathrm{Er}_{5}(\mathrm{BO}_{3})_{2}\mathrm{F}_{9}$	<i>C</i> 2/ <i>c</i> (15)	FEr ₃	hybrid configuration
166	Ho ₂ (BO ₃)F ₃	$P2_{1}/C(14)$	FHo ₃	hybrid configuration
167	Ho ₅ (BO ₃) ₂ F ₉	<i>C</i> 2/ <i>c</i> (15)	FHo ₃	hybrid configuration
168	$Gd_3(BO_3)_2F_3$	<i>Pnma</i> (62)	FGd ₃	hybrid configuration

169	$KBa_7Mg_2B_{14}O_{28}F_5$	<i>C</i> 2/ <i>c</i> (15)	FMg ₂ K ₂ , FMgK ₃	hybrid configuration
170	Compound I	<i>C</i> 2/ <i>c</i> (15)	FMg ₂ Na ₂ , FMgNa ₃	hybrid configuration
171	Dy ₂ (BO ₃)F ₃	$P2_{1}/C(14)$	FDy ₃	hybrid configuration
172	NaBa4(B5O9)2F2Cl	$P2_{1}/C(14)$	FBa ₃ Na, ClBa ₄	hybrid configuration
173	Compound II	$P2_{1}/C(14)$	FBa ₃ Na, BrBa ₄	hybrid configuration

Halogen	Linear configuration	Planar configuration	Spatial configuration	Hybrid configuration	Total
F	10	5	57	14	86
Cl	2	0	51	1	54
Br	0	0	32	1	33
Total	12	5	140	16	173

Table S6. The basic information of the anhydrous halogen-containing borates.

Fig S1. The $[Mg_2B_{14}O_{30}F_6]^{20}$ - 10-member rings in compound I

Fig. S2 Perpendicular relation between FPb_4 SUBs in $Pb_6B_3O_{10}F$

Fig. S3 Parallel relation between FCa₃ SUBs in Ca₃Be₆B₅O₁₆F

Fig. S4 The F-Be-A layer in $ABe_2(BO_3)F_2$ (A=K, Rb, Cs) viewed along *c* axis.

