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Figure S1. 1H NMR spectra of L (a) and [Zn(-OH)(L)]3(ClO4)3·5H2O (b) in Me2SO-d6 (†, 

H2O; *, CD3CHD2SO).
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Figure S2. TGA (dashed lines) and DSC (solid lines) curves of [ZnBr2(L)] (red) and [Zn(-

OH)(L)]3(ClO4)3·5H2O (blue).
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Figure S3. FT-IR spectra of [ZnBr2(L)] (a) and [Zn(μ-OH)(L)]3(ClO4)3∙5H2O (b).
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Figure S4. ORTEP drawings around C3-symmetric Zn3(μ-OH)3 ring. 
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Figure S5. The crystal structures and geometry around Zn(II) ions of [ZnBr2(L)].



Figure S6. 1H NMR on the procedure of transesterification using [Zn(μ-

OH)(L)]3(ClO4)3∙5H2O ((a) 0 h, (b) 5 min, (c) 15 min, (d) 45 min). 
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Table S1. The catalytic yields of transesterification reaction at 60 min according to the 

substrates

Substrate Yield (%)

Ethanol 100

n-Propanol 39.2

n-Butanol 9.9

iso-Propanol 0.23

2-Butanol 0.077

tert-Butanol 0



Table S2. The catalytic yields of transesterification reaction at 60 min according to catalysts

Catalysts Yield (%)

1 100

Zn(ClO4)2 + L 70

2 5.2



Table S3. The catalytic yields of transesterification reaction at 60 min according to the 

percentage of trace water of ethanol

% of water in ethanol solution Yield (%)

Absolute ethanol (99.9%) 100

98% ethanol 48.7

95% ethanol 5.5



Table S4. ICP-OES data of the transesterification solution using 1∙5H2O as a catalyst 

Zn(II)

After transesterification in methanol 445.923 ppm (7.96%)

After transesterification in absolute EtOH -

After transesterification in 95% EtOH 18.992 ppm (5.53%)

*The samples were diluted to 1 : 20 (v/v = sample : H2O).



Figure S7. Plot showing the recycling catalytic yield of transesterification of phenyl acetate 

using [Zn(μ-OH)(L)]3(ClO4)3∙5H2O in absolute ethanol (inset shows the catalytic yield at 60 

min). 
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Figure S8. Powder X-ray diffraction patterns of [Zn(μ-OH)(L)]3(ClO4)3∙5H2O before (a) and 

after (b) transesterification reaction.
 

 
 

10 20 30 40 50 60 70

  

 

2 θ (°)

In
te

ns
ity

(a)

(b)


