Electronic Supplementary Information

Tunable White-Light Emission PMMA-Supported Film Materials Containing Lanthanide Coordination Polymers: Preparation, Characterization, and Properties

Wei Chen,^a Ruiqing Fan,^{*a} Huijie Zhang,^a Yuwei Dong,^a Ping Wang,^a Yulin Yang^{*a}

^a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. of China

E-mail: fanruiqing@hit.edu.cn; ylyang@hit.edu.cn

	Content	Page No.
Scheme S1	The decarboxylation mechanism of H ₂ pydc	3
Figure S1	¹³ C NMR spectra of ligand H ₂ pydc and Hpyc ligands.	3
Figure S2	Infrared spectra of ligand H ₂ pydc and coordination polymer 1-Eu.	3
Figure S3	Infrared spectra of ligand Hpyc and coordination polymers 2-Nd \sim	4
	8-Er.	
Figure S4	The experimental and simulated PXRD patterns of 1-Eu.	5
Figure S5	The experimental and simulated PXRD patterns of $2-Nd \sim 8-Er$.	5
Figure S6	(a) The structural unit of 1-Eu with a labeling scheme and 50%	6
	thermal ellipsoids (free water molecules and hydrogen atoms are	
	omitted for clarity). (b) Polyhedral representation of the	
	coordination sphere of the Eul centre, displaying a distorted	
	tricapped trigonal prismatic arrangement in coordination polymer	
	1-Eu. (c) Polyhedral representation of the coordination sphere of	
	the Eu2 centre, displaying a distorted twist single-capped	
	quadrangular arrangement in coordination polymer 1-Eu.	

Index

Figure S7	The different coordination modes of coordinated pydc ²⁻ and pyc ⁻	6
	ligands in coordination polymers $1-Eu \sim 8-Er$.	
Figure S8	Polyhedral representation of the coordination sphere of the Sm^{3+}	7
	centre, displaying a distorted square antiprism arrangement in	
	coordination polymer 3-Sm .	
Figure S9	(a) The simplified 3-D diagram constructed by C5-H5A…O7	7
	hydrogen bonding. (b) The simplified 3-D diagram constructed by	
	C11–H11A…O8 hydrogen bonding.	
Figure S10	(a) The phosphorescence spectrum of coordination polymer 5-Gd	7
	at 77K. (b) The solid UV-vis absorption spectrum of Hpyc ligand.	
Figure S11	The solid state luminescence delay curve of 3-Sm .	8
Figure S12	The solid state luminescence delay curve of 2-Nd .	8
Figure S13	Infrared spectra of PMMA, 1-Eu-PMMA, 4-Eu-PMMA, and 6-	9
	Tb-PMMA.	
Figure S14	The solid UV-vis absorption spectrum of 1-Eu-PMMA, 4-Eu-	9
	PMMA, 6-Tb-PMMA, and W _(4-Eu,5-Gd,6-Tb) -PMMA.	
Figure S15	The luminescence (a)emission spectra and (b)delay curve of 1-Eu-	9
	PMMA.	
Figure S16	The luminescence delay curve of 4-Eu- PMMA.	10
Figure S17	The luminescence delay curve of 6-Tb- PMMA.	10
Figure S18	TG curves of 1-Eu and 1-Eu -PMMA.	11
Figure S19	TG curves of 4-Eu, 6-Tb, 4-Eu -PMMA, 6-Tb-PMMA and $W_{\text{(4-}}$	11
	Eu,5-Gd,6-Tb)-PMMA.	
Figure S20	The excitation spectra of $W_{(4-Eu,5-Gd,6-Tb)}$ -PMMA.	12
Table S1	Selected luminescent materials doped with PMMA matrix.	13
Table S2	Summary of coordination polymers based on pyridine-dicarboxylic	13-14
	acid.	
Table S3	Selected bond lengths in coordination polymers $1-Eu \sim 8-Er$.	15-16
Table S4	Selected bond angles in coordination polymers $1-Eu \sim 8-Er$.	16—20
Table S5	Luminescence data for complexes 1-Eu ~ 6-Tb.	21

Scheme S1 The decarboxylation mechanism of H2pydc

Figure S1 ¹³C NMR spectra of ligand H₂pydc and Hpyc ligands.

Figure S2 Infrared spectra of ligand H₂pydc and coordination polymer **1-Eu**.

Figure S3 Infrared spectra of ligand Hpyc and coordination polymers $2-Nd \sim 8-Er$.

Figure S4 The experimental and simulated PXRD patterns of 1-Eu.

Figure S5 The experimental and simulated PXRD patterns of $2-Nd \sim 8-Er$.

Figure S6 (a) The structural unit of 1-Eu with a labeling scheme and 50% thermal ellipsoids (free water molecules and hydrogen atoms are omitted for clarity). (b) Polyhedral representation of the coordination sphere of the Eu1 centre, displaying a distorted tricapped trigonal prismatic arrangement in coordination polymer 1-Eu. (c) Polyhedral representation of the coordination sphere of the Eu2 centre, displaying a distorted twist single-capped quadrangular arrangement in coordination polymer 1-Eu.

Figure S7 The different coordination modes of coordinated $pydc^{2-}$ and pyc^{-} ligands in coordination polymers **1-Eu** ~ **8-Er**.

Figure S8 Polyhedral representation of the coordination sphere of the Sm³⁺ centre, displaying a distorted square antiprism arrangement in coordination polymer **3-Sm**.

Figure S9 (a) The simplified 3-D diagram constructed by C5–H5A…O7 hydrogen bonding. (b) The simplified 3-D diagram constructed by C11–H11A…O8 hydrogen bonding.

Figure S10 (a) The phosphorescence spectrum of coordination polymer **5-Gd** at 77K. (b) The solid UV-vis absorption spectrum of Hpyc ligand.

Figure S11 The solid state luminescence delay curve of **3-Sm**.

Figure S12 The solid state luminescence delay curve of 2-Nd.

Figure S13 Infrared spectra of PMMA, 1-Eu-PMMA, 4-Eu-PMMA, and 6-Tb-PMMA.

Figure S14 The solid UV-vis absorption spectrum of 1-Eu-PMMA, 4-Eu-PMMA, 6-Tb-PMMA,

Figure S15 The luminescence (a)emission spectra and (b)delay curve of 1-Eu-PMMA.

Figure S16 The luminescence delay curve of **4-Eu-**PMMA.

Figure S17 The luminescence delay curve of 6-Tb-PMMA.

Figure S18 TG curves of **1-Eu** and **1-Eu**-PMMA.

Figure S19 TG curves of 4-Eu, 6-Tb, 4-Eu-PMMA, 6-Tb-PMMA and W_(4-Eu,5-Gd,6-Tb)-PMMA.

Figure S20 The excitation spectra of $W_{(4-Eu,5-Gd,6-Tb)}$ -PMMA.

Table S1 Selected luminescent materials doped with PMMA matri	ix.
---	-----

Coordination polymers / compound	Luminescent color	Reference
N-phenyl-N-(4-(quinolin-2-yl)phenyl)benzenamine	blue	ACS Appl. Mater. Interfaces, 2016, 8, 33034
tris(4-(quinolin-2-yl)phenyl)amine	blue	ACS Appl. Mater. Interfaces, 2016, 8, 33034
Eu(TTA) ₂ Tpy-OCH ₃ ·2H ₂ O	red	J Mater Sci: Mater Electron, 2016, 27:11284
$Eu(tta)_3 \cdot 2H_2O$	red	Optical Materials, 2016, 55, 78
NaYF ₄ :Yb ³⁺ , Er^{3+}	NIR	Adv. Mater., 2016, 28, 2518
[Eu(DBM) ₃ (5-Br-2,2'-bpy)]	red	Inorg. Chem. Comm.,2016, 64,13
Yb(hfpyr) ₃ (bath)	NIR	RSC Adv., 2016,6, 69509
$Re(L)(CO)_3(cbz_2phen)$	green	Dalton Trans., 2016,45, 11688
$NaYF_4:Er^{3+},Yb^{3+}$	NIR	J. Mater. Chem. C, 2016,4, 497
$Cu_2I_2(L1)_2$	green	ChemPlusChem, 2015, 80,1235
$[Cu_{3}I_{3}(bib)_{1.5}]_{n}$	yellow	J. Mater. Chem. C, 2015,3, 6249
$[Cu_4I_4(bix)_2]_n$	red	J. Mater. Chem. C, 2015,3, 6249
$[Zn(L^{1})(Py)Ln(L^{2})_{3}]$ (Ln = Nd, Yb, Er)	NIR	New J. Chem., 2015,39, 3698
$[Eu(qlc)_2(phen)(NO_3)] \cdot H_2O$	red	RSC Adv., 2015,5, 38254
$Eu(qlc)_2(H_2O)_4] \cdot (qlc) \cdot (H_2O)$	red	RSC Adv., 2015,5, 38254
$[CuI(3-Hqlc)]_n$	yellow	RSC Adv., 2015,5, 17343
$\{[Tb_3(L)(\mu_3-OH)_7]\cdot H_2O\}_n$	green	Dalton Trans., 2015,44, 2871
$NaGd(WO_4)_2$: Yb^{3+}/Tm^{3+}	NIR	Nanoscale, 2015,7, 1363
$Zn(L^n)(Py)Nd(NO_3)_3$	NIR	Inorg. Chem., 2014, 53, 5950

Table S2 Summary of coordination polymers based on pyridine-dicarboxylic acid.

Coordination polymers	Dimension	Ligand	Reference
$[Ba_2Ga_2(pydc)_4(OH)_2(H_2O)_2] \cdot 3H_2O$	3D	pyridine-2,5-dicarboxylic acid	Inorg. Chem. Comm.,2016, 70, 86
$[Sm(pydc)(Hpydc)(H_2O)_5] \cdot 4H_2O$	1D	pyridine-2,5-dicarboxylic acid	Z. Anorg. Allg. Chem., 2016, 642,
$[Ce(pydc)(bdc)(H_2O)]_n$	3D	pyridine-2,5-dicarboxylic acid	681
$[Nd_2(dipic)_3(H_2O)_3]_n$	3D	pyridine-3,5-dicarboxylic acid	

$[\Pr_2 A g_2(dinic)_4(H_2O)_5]_* \cdot 5nH_2O$	2D	pyridine-3 5-dicarboxylic acid	
$\{[LnAg_2(IN)_4(H_2O)_5]: NO_3: 2H_2O\}_n (Ln=Ho, Tb)$	0D/1D	isonicotinic acid	Journal of Solid State Chemistry,
$\{[\Pr Ag_2(IN)_4(H_2O)_2] \cdot NO_3 \cdot H_2O\}_n$	2D	isonicotinic acid	2016, 235, 193
$[LnAg(pdc)_2]_n$ (Ln=Eu, Pr)	3D/2D	pyridine-3,4-dicarboxylic acid	
$[Cd(Pydc)_2(H_2O)_2].H_2O$	2D	pyridine-2,5-dicarboxylic acid	Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal
			Chemistry, 2016, 46, 98
$[Cu_2(PDA)_2(Ald)_2(H_2O)_2] \cdot 8H_2O$	0D	pyridine-2,4-dicarboxylic acid	RSC Adv., 2016, 6, 37515
$[Cd_2K_4(2,3-PDC)_4]$	3D	pyridine-2,3-dicarboxylic acid	RSC Adv., 2015, 5, 97831
$[Cd_2(PDA)_2(H_2O)_3]_n$	1D	pyridine-2,6-dicarboxylic acid	Journal of Coordination Chemistry,
			2015, 904
[Cu(dipic)(µ-dipic)Cu(II)(H ₂ O)5]·2H ₂ O	0D	pyridine-2,6-dicarboxylic acid	CrystEngComm, 2014, 16, 6149
$[Cu3(dipic)4(en)2] \cdot enH_2 \cdot 4H_2O$	0D	pyridine-2,6-dicarboxylic acid	
$[Ln_2(PDC)_3(H_2O)_2(DMF)] 4H_2O (Ln=La, Pr, Sm)$	3D	pyridine-3,5-dicarboxylic acid	RSC Adv., 2016, 6, 63425
$[(CH_3)_2NH_2][Ln_2(PDC)_3(HCOO)(H_2O)_3]$ 2H ₂ O	2D		
(Ln=Tb, Ho)			
$[Ln(HPDC)_3(H_2O)_2] H_2O (Ln=Er, Lu)$	1D		
$[Cu(PDA)(Phen)(H_2O)]_2 \cdot 5H_2O$	3D	pyridine-2,6-dicarboxylic acid	Russian Journal of Coordination Chemistry, 2014, 304
$[Cd(2,3-pydc)]_n$	2D	pyridine-2,3-dicarboxylic acid	CrystEngComm, 2015, 17, 3619
${[Cd_2(2,3-pydc)(bpy)_2(NO_3)(H_2O)_2] \cdot (NO_3) \cdot 3H_2O}_n$	3D	pyridine-2,3-dicarboxylic acid	-
$[Cd_2(2,3-pydc)_2(H_2O)]_n$	3D	pyridine-2,3-dicarboxylic acid	
$[Ln(C_7H_3NO_4)(C_7H_4NO_4)(H_2O)]_n$ (Ln = Pr, Nd, Sm, Eu, and Tb)	2D	pyridine-2,3-dicarboxylic acid	Inorg. Chim. Acta, 2012, 392, 46

<u>1-Eu</u>						
Eu(1)-O(9)	2.38(1)	Eu(1)-O(13)	2.42(1)	Eu(1)-O(1)	2.54(1)	
Eu(1)-O(5)	2.38(1)	Eu(1)-O(1)	2.44(1)	Eu(1)-N(1)	2.64(2)	
Eu(1)-O(7)	2.41(1)	Eu(1)-O(3)	2.47(1)	Eu(1)-O(4)	2.73(1)	
Eu(2)-O(12)	2.37(2)	Eu(2)-O(10)	2.46(1)	Eu(2)-O(8)	2.56(1)	
Eu(2)-O(3)	2.40(1)	Eu(2)-O(2)	2.46(1)	Eu(2)-O(7)	2.63(1)	
Eu(2)-O(6)	2.42(1)	Eu(2)-N(3)	2.54(2)	Eu(2)-N(2)	2.63(2)	
2-Nd						
Nd(1)-O(5)	2.35(1)	Nd(1)-O(1)	2.42(1)	Nd(1)-O(7)	2.56(1)	
Nd(1)-O(2)	2.36(1)	Nd(1)-O(6)	2.48(1)	Nd(1)-O(8)	2.56(1)	
Nd(1)-O(3)	2.37(1)	Nd(1)-O(4)	2.49(1)			
3-Sm						
Sm(1)-O(2)	2.30(2)	Sm(1)-O(3)	2.41(3)	Sm(1)-O(7)	2.52(2)	
Sm(1)-O(4)	2.33(2)	Sm(1)-O(1)	2.43(2)	Sm(1)-O(8)	2.53(2)	
Sm(1)-O(5)	2.33(2)	Sm(1)-O(6)	2.49(2)			
4-Eu						
Eu(1)-O(1)	2.30(1)	Eu(1)-O(5)	2.39(1)	Eu(1)-O(7)	2.51(1)	
Eu(1)-O(6)	2.32(1)	Eu(1)-O(2)	2.44(1)	Eu(1)-O(8)	2.53(1)	
Eu(1)-O(4)	2.34(1)	Eu(1)-O(3)	2.46(1)			
5-Gd						
Gd(1)-O(6)	2.28(1)	Gd(1)-O(1)	2.37(1)	Gd(1)-O(7)	2.48(1)	
Gd(1)-O(2)	2.31(1)	Gd(1)-O(5)	2.43(1)	Gd(1)-O(8)	2.52(1)	
Gd(1)-O(4)	2.34(1)	Gd(1)-O(3)	2.44(1)			
6-Tb						
Tb(1)-O(6)	2.28(1)	Tb(1)-O(2)	2.36(1)	Tb(1)-O(8)	2.48(1)	
Tb(1)-O(1)	2.30(1)	Tb(1)-O(5)	2.41(1)	Tb(1)-O(7)	2.51(1)	
Tb(1)-O(3)	2.32(1)	Tb(1)-O(4)	2.42(1)			
7-Ho						
Ho(1)-O(2)	2.25(1)	Ho(1)-O(6)	2.34(1)	Ho(1)-O(7)	2.44(1)	
Ho(1)-O(5)	2.25(1)	Ho(1)-O(1)	2.36(1)	Ho(1)-O(8)	2.48(1)	
Ho(1)-O(4)	2.29(1)	Ho(1)-O(3)	2.39(1)			
8-Er						
Er(1)-O(5)	2.22(1)	Er(1)-O(4)	2.32(1)	Er(1)-O(7)	2.44(1)	
Er(1)-O(3)	2.27(1)	Er(1)-O(6)	2.36(1)	Er(1)-O(8)	2.46(1)	
Er(1)-O(2)	2.28(1)	Er(1)-O(1)	2.38(1)			

Table S3 Selected bond lengths in coordination polymers $1-Eu \sim 8-Er$.

Table S4 Selected bond angles in coordination polymers $1-Eu \sim 8-Er$.

1-Eu					
O(9)-Eu(1)-O(5)	139.9(4)	O(7)-Eu(1)-O(3)	70.9(4)	O(13)-Eu(1)-N(1)	74.6(5)
O(9)-Eu(1)-O(7)	75.0(5)	O(13)-Eu(1)-O(3)	121.5(5)	O(1)-Eu(1)-N(1)	62.1(5)
O(5)-Eu(1)-O(7)	139.0(5)	O(1)-Eu(1)-O(3)	145.1(4)	O(3)-Eu(1)-N(1)	139.0(5)

O(9)-Eu(1)-O(13)	76.8(5)	O(9)-Eu(1)-O(1)	141.2(4)	O(1)-Eu(1)-N(1)	112.3(5)
O(5)-Eu(1)-O(13)	76.0(5)	O(5)-Eu(1)-O(1)	70.2(4)	O(9)-Eu(1)-O(4)	67.5(4)
O(7)-Eu(1)-O(13)	144.4(5)	O(7)-Eu(1)-O(1)	69.4(5)	O(5)-Eu(1)-O(4)	76.4(4)
O(9)-Eu(1)-O(1)	134.8(4)	O(13)-Eu(1)-O(1)	142.0(5)	O(7)-Eu(1)-O(4)	115.2(4)
O(5)-Eu(1)-O(1)	72.5(4)	O(1)-Eu(1)-O(1)	66.3(5)	O(13)-Eu(1)-O(4)	72.3(4)
O(7)-Eu(1)-O(1)	97.0(4)	O(3)-Eu(1)-O(1)	78.9(4)	O(1)-Eu(1)-O(4)	146.3(4)
O(13)-Eu(1)-O(1)	87.6(5)	O(9)-Eu(1)-N(1)	72.8(5)	O(3)-Eu(1)-O(4)	49.7(4)
O(9)-Eu(1)-O(3)	75.2(4)	O(5)-Eu(1)-N(1)	126.0(5)	O(1)-Eu(1)-O(4)	114.6(4)
O(5)-Eu(1)-O(3)	94.9(5)	O(7)-Eu(1)-N(1)	76.6(5)	N(1)-Eu(1)-O(4)	132.8(4)
O(12)-Eu(2)-O(3)	78.0(5)	O(6)-Eu(2)-N(3)	76.2(5)	O(10)-Eu(2)-O(7)	97.5(4)
O(12)-Eu(2)-O(6)	118.0(5)	O(10)-Eu(2)-N(3)	64.9(5)	O(2)-Eu(2)-O(7)	82.1(5)
O(3)-Eu(2)-O(6)	73.7(5)	O(2)-Eu(2)-N(3)	76.1(5)	N(3)-Eu(2)-O(7)	125.5(5)
O(12)-Eu(2)-O(10)	76.0(5)	O(12)-Eu(2)-O(8)	103.1(5)	O(8)-Eu(2)-O(7)	49.9(4)
O(3)-Eu(2)-O(10)	153.0(5)	O(3)-Eu(2)-O(8)	113.0(4)	O(12)-Eu(2)-N(2)	76.5(5)
O(6)-Eu(2)-O(10)	125.4(4)	O(6)-Eu(2)-O(8)	138.7(5)	O(3)-Eu(2)-N(2)	108.8(5)
O(12)-Eu(2)-O(2)	145.9(5)	O(10)-Eu(2)-O(8)	67.1(5)	O(6)-Eu(2)-N(2)	63.0(5)
O(3)-Eu(2)-O(2)	71.0(5)	O(2)-Eu(2)-O(8)	77.1(5)	O(10)-Eu(2)-N(2)	71.4(5)
O(6)-Eu(2)-O(2)	66.6(4)	N(3)-Eu(2)-O(8)	76.5(5)	O(2)-Eu(2)-N(2)	126.7(5)
O(10)-Eu(2)-O(2)	131.6(5)	O(12)-Eu(2)-O(7)	73.3(5)	N(3)-Eu(2)-N(2)	76.5(5)
O(12)-Eu(2)-N(3)	137.7(5)	O(3)-Eu(2)-O(7)	68.3(4)	O(8)-Eu(2)-N(2)	137.1(5)
O(3)-Eu(2)-N(3)	142.1(5)	O(6)-Eu(2)-O(7)	136.9(4)	O(7)-Eu(2)-N(2)	149.6(5)
2-Nd					
O(5)-Nd(1)-O(2)	158.9(4)	O(3)-Nd(1)-O(4)	71.1(4)	O(1)-Nd(1)-O(8)	72.9(4)
O(5)-Nd(1)-O(3)	81.9(4)	O(1)-Nd(1)-O(4)	73.5(4)	O(6)-Nd(1)-O(8)	71.3(4)
O(2)-Nd(1)-O(3)	82.4(4)	O(6)-Nd(1)-O(4)	143.4(4)	O(4)-Nd(1)-O(8)	137.6(4)
O(5)-Nd(1)-O(1)	101.2(4)	O(5)-Nd(1)-O(7)	127.1(3)	O(7)-Nd(1)-O(8)	49.8(3)
O(2)-Nd(1)-O(1)	83.6(4)	O(2)-Nd(1)-O(7)	74.0(4)	O(5)-Nd(1)-N(4)	103.3(4)
O(3)-Nd(1)-O(1)	143.9(4)	O(3)-Nd(1)-O(7)	132.8(3)	O(2)-Nd(1)-N(4)	97.7(4)
O(5)-Nd(1)-O(6)	82.1(3)	O(1)-Nd(1)-O(7)	73.5(4)	O(3)-Nd(1)-N(4)	145.3(4)
O(2)-Nd(1)-O(6)	106.8(4)	O(6)-Nd(1)-O(7)	75.1(4)	O(1)-Nd(1)-N(4)	69.6(4)
O(3)-Nd(1)-O(6)	73.6(4)	O(4)-Nd(1)-O(7)	138.2(4)	O(6)-Nd(1)-N(4)	73.2(4)
O(1)-Nd(1)-O(6)	142.5(4)	O(5)-Nd(1)-O(8)	77.8(3)	O(4)-Nd(1)-N(4)	143.1(4)
O(5)-Nd(1)-O(4)	84.1(3)	O(2)-Nd(1)-O(8)	122.9(4)	O(7)-Nd(1)-N(4)	24.5(4)
O(2)-Nd(1)-O(4)	77.5(3)	O(3)-Nd(1)-O(8)	141.4(4)	O(8)-Nd(1)-N(4)	25.5(3)
3-Sm					
O(2)-Sm(1)-O(4)	158.6(7)	O(5)-Sm(1)-O(6)	70.4(7)	O(3)-Sm(1)-O(8)	74.1(8)
O(2)-Sm(1)-O(5)	82.6(7)	O(3)-Sm(1)-O(6)	73.4(8)	O(1)-Sm(1)-O(8)	74.6(7)
O(4)-Sm(1)-O(5)	82.5(8)	O(1)-Sm(1)-O(6)	143.0(7)	O(6)-Sm(1)-O(8)	139.2(7)
O(2)-Sm(1)-O(3)	100.3(8)	O(2)-Sm(1)-O(7)	77.7(7)	O(7)-Sm(1)-O(8)	50.0(6)
O(4)-Sm(1)-O(3)	82.7(9)	O(4)-Sm(1)-O(7)	123.0(7)	O(2)-Sm(1)-N(4)	103.3(8)
O(5)-Sm(1)-O(3)	143.0(8)	O(5)-Sm(1)-O(7)	141.9(8)	O(4)-Sm(1)-N(4)	97.6(8)
O(2)-Sm(1)-O(1)	83.5(8)	O(3)-Sm(1)-O(7)	73.2(8)	O(5)-Sm(1)-N(4)	145.9(9)
			- (-)		
O(4)-Sm(1)-O(1)	107.0(8)	O(1)-Sm(1)-O(7)	71.7(8)	O(3)-Sm(1)-N(4)	69.8(8)

O(3)-Sm(1)-O(1)	143.0(8)	O(2)-Sm(1)-O(8)	127.2(7)	O(6)-Sm(1)-N(4)	143.2(8)
O(2)-Sm(1)-O(6)	82.6(7)	O(4)-Sm(1)-O(8)	74.1(7)	O(7)-Sm(1)-N(4)	25.7(7)
O(4)-Sm(1)-O(6)	78.0(7)	O(5)-Sm(1)-O(8)	132.8(7)	O(8)-Sm(1)-N(4)	24.5(8)
4-Eu					
O(1)-Eu(1)-O(6)	159.4(3)	O(4)-Eu(1)-O(3)	71.0(3)	O(5)-Eu(1)-O(8)	73.3(3)
O(1)-Eu(1)-O(4)	82.4(3)	O(5)-Eu(1)-O(3)	73.0(3)	O(2)-Eu(1)-O(8)	71.5(3)
O(6)-Eu(1)-O(4)	82.4(3)	O(2)-Eu(1)-O(3)	143.7(3)	O(3)-Eu(1)-O(8)	136.9(3)
O(1)-Eu(1)-O(5)	100.3(3)	O(1)-Eu(1)-O(7)	127.1(3)	O(7)-Eu(1)-O(8)	50.8(3)
O(6)-Eu(1)-O(5)	83.9(3)	O(6)-Eu(1)-O(7)	73.5(3)	O(1)-Eu(1)-N(4)	102.6(3)
O(4)-Eu(1)-O(5)	143.3(3)	O(4)-Eu(1)-O(7)	133.1(3)	O(6)-Eu(1)-N(4)	97.9(3)
O(1)-Eu(1)-O(2)	83.1(3)	O(5)-Eu(1)-O(7)	73.8(3)	O(4)-Eu(1)-N(4)	145.3(3)
O(6)-Eu(1)-O(2)	105.8(3)	O(2)-Eu(1)-O(7)	74.9(3)	O(5)-Eu(1)-N(4)	70.4(3)
O(4)-Eu(1)-O(2)	73.9(3)	O(3)-Eu(1)-O(7)	138.1(3)	O(2)-Eu(1)-N(4)	72.7(3)
O(5)-Eu(1)-O(2)	142.8(3)	O(1)-Eu(1)-O(8)	76.9(3)	O(3)-Eu(1)-N(4)	143.4(3)
O(1)-Eu(1)-O(3)	83.5(3)	O(6)-Eu(1)-O(8)	123.4(3)	O(7)-Eu(1)-N(4)	25.0(3)
O(6)-Eu(1)-O(3)	78.4(3)	O(4)-Eu(1)-O(8)	141.3(3)	O(8)-Eu(1)-N(4)	25.8(3)
5-Gd					
O(6)-Gd(1)-O(2)	159.5(5)	O(4)-Gd(1)-O(3)	71.5(4)	O(1)-Gd(1)-O(8)	72.7(5)
O(6)-Gd(1)-O(4)	82.7(5)	O(1)-Gd(1)-O(3)	72.8(5)	O(5)-Gd(1)-O(8)	71.7(4)
O(2)-Gd(1)-O(4)	82.3(5)	O(5)-Gd(1)-O(3)	144.2(5)	O(3)-Gd(1)-O(8)	136.4(4)
O(6)-Gd(1)-O(1)	99.6(4)	O(6)-Gd(1)-O(7)	126.8(4)	O(7)-Gd(1)-O(8)	50.9(4)
O(2)-Gd(1)-O(1)	84.6(5)	O(2)-Gd(1)-O(7)	73.7(5)	O(6)-Gd(1)-N(4)	102.6(5)
O(4)-Gd(1)-O(1)	143.8(5)	O(4)-Gd(1)-O(7)	132.6(4)	O(2)-Gd(1)-N(4)	97.7(5)
O(6)-Gd(1)-O(5)	83.5(4)	O(1)-Gd(1)-O(7)	74.2(4)	O(4)-Gd(1)-N(4)	145.6(5)
O(2)-Gd(1)-O(5)	105.5(4)	O(5)-Gd(1)-O(7)	74.4(4)	O(1)-Gd(1)-N(4)	69.7(5)
O(4)-Gd(1)-O(5)	73.7(5)	O(3)-Gd(1)-O(7)	138.2(4)	O(5)-Gd(1)-N(4)	73.2(4)
O(1)-Gd(1)-O(5)	142.5(5)	O(6)-Gd(1)-O(8)	76.5(4)	O(3)-Gd(1)-N(4)	142.5(4)
O(6)-Gd(1)-O(3)	83.7(4)	O(2)-Gd(1)-O(8)	123.6(5)	O(7)-Gd(1)-N(4)	24.9(4)
O(2)-Gd(1)-O(3)	78.3(4)	O(4)-Gd(1)-O(8)	141.2(5)	O(8)-Gd(1)-N(4)	26.1(4)
6-Tb					
O(6)-Tb(1)-O(1)	160.05(16)	O(3)-Tb(1)-O(4)	71.23(15)	O(2)-Tb(1)-O(7)	73.07(16)
O(6)-Tb(1)-O(3)	82.98(16)	O(2)-Tb(1)-O(4)	73.24(16)	O(5)-Tb(1)-O(7)	71.71(15)
O(1)-Tb(1)-O(3)	82.24(17)	O(5)-Tb(1)-O(4)	143.71(16)	O(4)-Tb(1)-O(7)	136.63(15)
O(6)-Tb(1)-O(2)	99.98(16)	O(6)-Tb(1)-O(8)	126.76(16)	O(8)-Tb(1)-O(7)	51.19(14)
O(1)-Tb(1)-O(2)	84.36(16)	O(1)-Tb(1)-O(8)	73.17(16)	O(6)-Tb(1)-N(4)	101.76(15)
O(3)-Tb(1)-O(2)	143.80(17)	O(3)-Tb(1)-O(8)	132.94(15)	O(1)-Tb(1)-N(4)	98.03(16)
O(6)-Tb(1)-O(5)	83.46(15)	O(2)-Tb(1)-O(8)	73.36(16)	O(3)-Tb(1)-N(4)	145.06(16)
O(1)-Tb(1)-O(5)	105.00(15)	O(5)-Tb(1)-O(8)	74.97(16)	O(2)-Tb(1)-N(4)	70.16(16)
O(3)-Tb(1)-O(5)	73.57(16)	O(4)-Tb(1)-O(8)	137.95(16)	O(5)-Tb(1)-N(4)	72.66(16)
O(2)-Tb(1)-O(5)	142.57(16)	O(6)-Tb(1)-O(7)	76.00(16)	O(4)-Tb(1)-N(4)	143.39(16)
O(6)-Tb(1)-O(4)	83.80(16)	O(1)-Tb(1)-O(7)	123.64(16)	O(8)-Tb(1)-N(4)	25.40(15)
O(1)-Tb(1)-O(4)	78.80(15)	O(3)-Tb(1)-O(7)	141.00(17)	O(7)-Tb(1)-N(4)	25.83(15)
7-Ho					
O(2)-Ho(1)-O(5)	159.6(4)	O(4)-Ho(1)-O(3)	71.0(3)	O(6)-Ho(1)-O(8)	73.1(4)

O(2)-Ho(1)-O(4)	83.0(4)	O(6)-Ho(1)-O(3)	73.1(4)	O(1)-Ho(1)-O(8)	71.9(3)
O(5)-Ho(1)-O(4)	82.5(4)	O(1)-Ho(1)-O(3)	143.6(4)	O(3)-Ho(1)-O(8)	136.3(3)
O(2)-Ho(1)-O(6)	99.1(3)	O(2)-Ho(1)-O(7)	126.7(3)	O(7)-Ho(1)-O(8)	51.4(3)
O(5)-Ho(1)-O(6)	84.3(3)	O(5)-Ho(1)-O(7)	73.6(3)	O(2)-Ho(1)-N(4)	102.0(4)
O(4)-Ho(1)-O(6)	143.6(4)	O(4)-Ho(1)-O(7)	133.1(4)	O(5)-Ho(1)-N(4)	98.0(4)
O(2)-Ho(1)-O(1)	84.2(3)	O(6)-Ho(1)-O(7)	73.9(4)	O(4)-Ho(1)-N(4)	145.7(4)
O(5)-Ho(1)-O(1)	105.2(3)	O(1)-Ho(1)-O(7)	74.6(3)	O(6)-Ho(1)-N(4)	69.8(4)
O(4)-Ho(1)-O(1)	73.7(4)	O(3)-Ho(1)-O(7)	138.5(3)	O(1)-Ho(1)-N(4)	73.1(4)
O(6)-Ho(1)-O(1)	142.7(4)	O(2)-Ho(1)-O(8)	75.7(3)	O(3)-Ho(1)-N(4)	143.0(4)
O(2)-Ho(1)-O(3)	83.1(4)	O(5)-Ho(1)-O(8)	124.1(4)	O(7)-Ho(1)-N(4)	25.1(4)
O(5)-Ho(1)-O(3)	78.7(3)	O(4)-Ho(1)-O(8)	140.9(4)	O(8)-Ho(1)-N(4)	26.3(3)
8-Er					
O(5)-Er(1)-O(3)	160.8(4)	O(2)-Er(1)-O(1)	70.9(4)	O(4)-Er(1)-O(8)	73.1(4)
O(5)-Er(1)-O(2)	84.3(4)	O(4)-Er(1)-O(1)	72.6(3)	O(6)-Er(1)-O(8)	72.0(4)
O(3)-Er(1)-O(2)	82.2(4)	O(6)-Er(1)-O(1)	144.4(4)	O(1)-Er(1)-O(8)	135.8(3)
O(5)-Er(1)-O(4)	98.8(4)	O(5)-Er(1)-O(7)	125.4(4)	O(7)-Er(1)-O(8)	51.6(3)
O(3)-Er(1)-O(4)	84.1(4)	O(3)-Er(1)-O(7)	73.7(4)	O(5)-Er(1)-N(4)	101.4(4)
O(2)-Er(1)-O(4)	142.9(4)	O(2)-Er(1)-O(7)	132.7(4)	O(3)-Er(1)-N(4)	97.4(4)
O(5)-Er(1)-O(6)	84.3(4)	O(4)-Er(1)-O(7)	74.7(3)	O(2)-Er(1)-N(4)	145.9(4)
O(3)-Er(1)-O(6)	105.0(4)	O(6)-Er(1)-O(7)	73.4(4)	O(4)-Er(1)-N(4)	70.0(3)
O(2)-Er(1)-O(6)	74.5(4)	O(1)-Er(1)-O(7)	138.8(4)	O(6)-Er(1)-N(4)	72.8(4)
O(4)-Er(1)-O(6)	142.6(4)	O(5)-Er(1)-O(8)	74.4(4)	O(1)-Er(1)-N(4)	142.7(3)
O(5)-Er(1)-O(1)	84.2(4)	O(3)-Er(1)-O(8)	124.2(4)	O(7)-Er(1)-N(4)	24.6(4)
O(3)-Er(1)-O(1)	78.5(3)	O(2)-Er(1)-O(8)	141.6(4)	O(8)-Er(1)-N(4)	27.1(3)

Table S5 Luminescence data for coordination polymers $1\text{-}Eu\sim6\text{-}Tb.$

Coordination polymers	Emission transitions	$\lambda_{em}(nm)$	τ (μs)
1-Eu	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{J} \left(J = 0 - 4 \right)$	579, 591, 615, 652, 696	648.68
2-Nd	${}^{4}F_{3/2} \rightarrow {}^{4}I_{J/2} (J = 9, 11, 13)$	891, 1057, 1330	6.84
3-Sm	${}^{4}\text{G}_{5/2} \rightarrow {}^{6}\text{H}_{J/2} (J = 5, 7, 9, 11)$	562, 597, 644,704	6.75
4-Eu	${}^{5}\mathrm{D}_{0} \rightarrow {}^{7}\mathrm{F}_{J} \left(J = 0 - 4 \right)$	579, 592, 618, 653, 699	1012.58
5-Gd ^a	$\pi^* \rightarrow \pi$	418	-
6-Tb	${}^{5}\mathrm{D}_{4} \rightarrow {}^{7}\mathrm{F}_{J}(J = 6 - 2)$	489, 542, 590, 620, 650	1247.74

^a The luminescent properties of coordination polymer **5-Gd** was measured at 77K.