Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information for:

Neutral and Cationic Bismuth Compounds Supported by Bis(amidodimethyl)disiloxane Ligands

R. J. Schwamm, M. P. Coles, and C. M. Fitchett

Contents

Page

- S2 Figure S1 ¹H NMR spectrum of Bi(NON^{Ar'})Cl (1b).
- S3 **Figure S2** ¹³C{¹H} NMR spectrum of Bi(NON^{Ar'})Cl (**1b**).
- S4 **Figure S3** ¹H NMR spectrum of $\{Bi(NON^{Ar'})\}_2(\mu$ -NON^{Ar'}) (**2b**).
- S5 **Figure S4** ¹³C{¹H} NMR spectrum of {Bi(NON^{Ar'})}₂(μ -NON^{Ar'}) (**2b**).
- S6 Figure S5 Solid-state dimers of $[1b]_2$ and $[1c]_2$.
- S7 **Table S1** Crystal structure and refinement data for $Bi(NON^{Ar'})CI$ (**1b**), { $Bi(NON^{Ar'})$ }₂(μ -NON^{Ar'}) (**2b**), [$Bi(NON^{Ar'})$][$AICI_4$]• C_7H_8 (**3c**) and [$Bi(NON^{Ar'})$][Ga_2CI_7] (**4c**)

Figure S1 ¹H NMR spectrum (300 MHz, C₆D₆) of Bi(NON^{Ar'})Cl (1b)

Figure S5 Solid-state dimers of $[\mathbf{1b}]_2$ (top) and $[\mathbf{1c}]_2$ (bottom). (a) ' 2–*x*, 2–*y*, -*z*. Bi···C14' 3.673(6) Å; Bi···C15' 3.540(6) Å; Bi···C16' 3.489(5) Å; Bi···C17' 3.496(5) Å; Bi···C18' 3.634(6) Å. (b) ' = 1–*x*, 1–*y*, 1–*z*. Bi···C19' 3.715(4) Å; Bi···C20' 3.753(4) Å.

Table S1Crystal structure and refinement data for Bi(NONAr')Cl (1b), $\{Bi(NONAr')\}_2(\mu - NONAr')$ (2b), $[Bi(NONAr')][AlCl_4] \cdot C_7 H_8$ (3c)and $[Bi(NONAr')][Ga_2Cl_7]$ (4c)

	1b	2b	3c	4c
CCDC number	1528433	1528434	1528435	1528436
Empirical formula	C ₂₀ H ₃₀ BiClN ₂ OSi ₂	$C_{60}H_{90}Bi_2N_6O_3Si_6$	$C_{35}H_{54}AIBiCl_4N_2OSi_2$	$C_{28}H_{46}BiCl_7Ga_2N_2OSi_2$
M _r	615.07	1529.87	952.74	1079.42
Radiation (wavelength [Å])	ΜοΚα (λ = 0.71073)	CuKα (λ = 1.54184)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
<i>T</i> [K]	173(2)	120.0(1)	120.01(10)	120.0(1)
Crystal size [mm]	$0.10 \times 0.08 \times 0.04$	$0.21 \times 0.17 \times 0.06$	$0.46 \times 0.31 \times 0.22$	$0.41 \times 0.29 \times 0.16$
Crystal system	triclinic	triclinic	triclinic	monoclinic
Space group	Р ¹ (No.2)	Р ¹ (No.2)	Р ¹ (No.2)	<i>P</i> 2 ₁ / <i>c</i> (No.14)
a [Å]	9.8884(3)	11.7744(3)	10.5351(2)	10.0533(2)
<i>b</i> [Å]	10.6089(4)	15.3339(4)	10.8349(2)	10.2526(3)
<i>c</i> [Å]	12.3277(5)	19.9763(5)	18.5054(3)	39.4446(10)
α[°]	85.527(2)	102.811(2)	87.1030(13)	90
β[°]	76.827(2)	90.9255(19)	88.7719(13)	92.9450(19)
אני]	68.765(2)	107.564(2)	75.1549(15)	90
V [Å ³]	1173.70(7)	3339.50(16)	2039.14(6)	4060.27(16)
Ζ	2	2	2	4
$D_{\text{calc.}}$ [Mg m ⁻³]	1.74	1 52	1.55	1.77
Absorption coefficient [mm ⁻¹]	7.739	11.608	4.695	6.186
heta range for data collection [°]	1.70 to 27.49	3.11 to 69.99	2.60 to 30.0	2.82 to 26.00
Reflections collected	17593	38204	73699	31043
Independent reflections (R _{int})	5299 (0.054)	12659 (0.039)	11894 (0.028)	7987 (0.050)
Data/restraints/parameters	5299 / 0 / 248	12659 / 0 / 718	11894 / 0 / 428	7987 / 12 / 400
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R1 = 0.029$, w $R_2 = 0.062$	$R1 = 0.031$, w $R_2 = 0.080$	$R1 = 0.015$, w $R_2 = 0.038$	$R1 = 0.060, wR_2 = 0.105$
Final <i>R</i> indices (all data)	$R1 = 0.040, wR_2 = 0.090$	$R1 = 0.031$, w $R_2 = 0.081$	$R1 = 0.016$, w $R_2 = 0.039$	$R1 = 0.066$, w $R_2 = 0.106$
GOOF on F ²	1.466	1.103	1.134	1.367
Largest diff. peak/hole [e.Å ⁻³]	0.93 and –2.79	1.39 and –2.52	1.00 and –0.55	1.34 and –2.57