Supplementary

Figure S1: Schematic energy level diagram of (VO₄)³⁻ and Yb³⁺ in YbVO₄.^{8,20} Black arrows show excitation, while the green and red arrows
5 show emission processes. Relaxation from the ¹T_{1,2} excited states to the ³T_{1,2} excited states is most likely non-radiative (short dash). From the ³T_{1,2} excited states, energy can transfer to two nearby Yb³⁺ via CET (dashed arrows). The positions of the energy levels are approximate.

 $\ensuremath{\mathsf{OceanOptics}}$ USB4000 photo spectrometer. No corrections have been made.

Figure S3: FE-SEM image of a sample with a 1:3 pulse ratio of Yb(thd)₃ and VO(thd)₂. The amorphous material is expected to consist mostly of excess V_2O_5 .

10 Figure S2: Normalized PL spectra of samples with a 1:3 pulse ratio of $Yb(thd)_3$ and $VO(thd)_2$ annealed at 600-700 °C. Measured with an 20

Figure S4: Elemental mapping of a non-crystalline area on a sample with 30 pulse% Yb(thd)₃, showing that the amorphous material consists of vanadium, oxygen and carbon and contains no ytterbium.

Figure S5: Absorption spectra of some of the as-deposited samples deposited on fused silica. The absorption of the fused silica substrate has not been subtracted.