Electronic Supporting Information for

Molecular isomerism induced $\mathbf{F e}($ II) spin state difference based on tautomerization of 4(5)-methylimidazole group

Wang-Kang Han ${ }^{a}$, Zhi-Hua Li ${ }^{a}$, Wei Zhu ${ }^{a}$, Tao Li ${ }^{a}$, Zaijun Li ${ }^{a}$, Xuehong Ren ${ }^{b}$ and Zhi-Guo Gu*

${ }^{a}$ The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
${ }^{b}$ The Key Laboratory of Eco-textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi 214122, P.R. China

E-mail: zhiguogu@jiangnan.edu.cn

1. The fast tautomerization process of 4(5)-methylimidazole-2-carbaldehyde

The tautomerization of proton transfer in 4(5)-methylimidazole group is typically a very fast process, and the peaks associated with each tautomer even could not be discernible through ${ }^{1} \mathrm{H}$ NMR.
$\stackrel{e}{n}$
$\stackrel{y}{\top}$

Figure. S1. ${ }^{1} \mathrm{H}$ NMR spectrum of 4(5)-methylimidazole-2-carbaldehyde.

2. Characterizations of 4(5)-MHIC

Figure. $\boldsymbol{S} 2$. ATR-FTIR spectrum of 4(5)-MHIC.

Figure. $\boldsymbol{S 3} .{ }^{1} \mathrm{H}$ NMR spectrum of $4(5)-\mathrm{MHIC}$.

Figure. S4. Partial ${ }^{1} \mathrm{H}$ NMR spectrum for 4(5)-MHIC showing relative intensities of peaks associated with the 4-methyl and 5-methyl tautomers.

3. Infrared (IR) spectra of complexes 1a, 1b and 2

Figure. $\boldsymbol{S 5}$. ATR FT-IR spectra of $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$.

4. UV/Vis spectra

Figure S6. UV/Vis spectrum of $\mathbf{2}$ at room temperature in $\mathrm{CH}_{3} \mathrm{CN}$ solution $\left(10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$.

5. Thermogravimetric analyses (TGA)

Figure S7. Thermogravimetric analyses (TGA) of 1a, 1b and $\mathbf{2 .}$

The weight of all three were nearly a constant following the increasing temperature until $197{ }^{\circ} \mathrm{C}$ for $\mathbf{1 a}, 236^{\circ} \mathrm{C}$ for $\mathbf{1 b}$ and $206^{\circ} \mathrm{C}$ for $\mathbf{2}$, and then the complex started to decompose with abrupt losses of almost weight (76 percent for $\mathbf{1 a}, 74$ percent for $\mathbf{1 b}$ and 71 percent for $\mathbf{2}$). Further heated to $500{ }^{\circ} \mathrm{C}$, there were approximate 14 percent of weight residual, which possibly corresponded to the iron oxides.

6. Crystal-packing diagram of complexes $1 \mathrm{a}, 1 \mathrm{~b}$ and 2

Figure S8. Representation of the crystal packing for 1a. All H atoms and the N -alkyl chains in imidazole rings have been removed for clarity. Color code: C , gray; N , blue; Fe , violet; O , red; Cl , dark green; H-bonding interactions, green dashed lines.

Figure S9. Representation of the crystal packing for $\mathbf{1 b}$. All H atoms, anions and the N -alkyl chains in imidazole rings have been removed for clarity. Color code: C, gray; N, blue; Fe, violet; $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, green dashed lines.

Figure S10. Representation of the crystal packing for 2. All H atoms, anions and the N -alkyl chains in imidazole rings have been removed for clarity. Color code: C , gray; N , blue; Fe , violet; C-H $\cdots \pi$ interactions, green dashed lines.
7. Powder X-ray diffraction (PXRD) of complexes 1a, 1b and 2

Figure S11. Observed and simulated powder X-ray diffraction (PXRD) of 1a.

Figure S12. Observed and simulated powder X-ray diffraction (PXRD) of 1b.

Figure S13. Observed and simulated powder X-ray diffraction (PXRD) of $\mathbf{2}$.

8. X-ray crystallographic data

Table S1. Selected bond lengths $\left[\AA\right.$] and angles $\left[{ }^{\circ}\right]$ for 1a, 1b and $\mathbf{2}$.

$1 \mathbf{a}$		1b		2	
$\mathrm{Fe}(1)-\mathrm{N}(1)$	1.960(6)	$\mathrm{Fe}(1)-\mathrm{N}(1 \mathrm{~A})$	2.140 (9)	$\mathrm{Fe}(1)-\mathrm{N}(1) \# 5$	2.096 (6)
$\mathrm{Fe}(1)-\mathrm{N}(1) \# 4$	1.960 (6)	$\mathrm{Fe}(1)-\mathrm{N}(1 \mathrm{~B})$	2.151(10)	$\mathrm{Fe}(1)-\mathrm{N}(1) \# 6$	2.096 (6)
$\mathrm{Fe}(1)-\mathrm{N}(1) \# 3$	1.960 (6)	$\mathrm{Fe}(1)-\mathrm{N}(1 \mathrm{C})$	$2.168(9)$	$\mathrm{Fe}(1)-\mathrm{N}(1)$	$2.096(6)$
$\mathrm{Fe}(1)-\mathrm{N}(3)$	1.982(7)	$\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~B})$	2.204(9)	$\mathrm{Fe}(1)-\mathrm{N}(3)$	$2.196(6)$
$\mathrm{Fe}(1)-\mathrm{N}(3) \# 4$	1.982(7)	$\mathrm{Fe}(1) \mathrm{-N}(3 \mathrm{C})$	2.208(9)	$\mathrm{Fe}(1)-\mathrm{N}(3) \# 5$	$2.196(6)$
$\mathrm{Fe}(1)-\mathrm{N}(3) \# 3$	1.982(7)	$\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~A})$	$2.237(9)$	$\mathrm{Fe}(1)-\mathrm{N}(3) \# 6$	$2.196(6)$
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(1) \# 4$	91.3(2)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Fe}(1)-\mathrm{N}(1 \mathrm{~B})$	94.2(4)	$\mathrm{N}(1) \# 5-\mathrm{Fe}(1)-\mathrm{N}(1) \# 6$	90.5(2)
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(1) \# 3$	91.3(2)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Fe}(1)-\mathrm{N}(1 \mathrm{C})$	94.5(4)	$\mathrm{N}(1) \# 5-\mathrm{Fe}(1)-\mathrm{N}(1)$	90.5(2)
$\mathrm{N}(1) \# 4-\mathrm{Fe}(1)-\mathrm{N}(1) \# 3$	91.3(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Fe}(1)-\mathrm{N}(1 \mathrm{C})$	92.5(4)	$\mathrm{N}(1) \# 6-\mathrm{Fe}(1)-\mathrm{N}(1)$	90.5(2)
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3)$	81.0(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~B})$	169.6(4)	$\mathrm{N}(1) \# 5-\mathrm{Fe}(1)-\mathrm{N}(3)$	167.7(2)
$\mathrm{N}(1) \# 4-\mathrm{Fe}(1)-\mathrm{N}(3)$	91.8(2)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~B})$	76.6(4)	$\mathrm{N}(1) \# 6-\mathrm{Fe}(1)-\mathrm{N}(3)$	91.4(2)
$\mathrm{N}(1) \# 3-\mathrm{Fe}(1)-\mathrm{N}(3)$	171.8(3)	$\mathrm{N}(1 \mathrm{C})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~B})$	91.0(4)	$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3)$	77.3(2)
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 4$	171.8(3)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{C})$	90.0(4)	$\mathrm{N}(1) \# 5-\mathrm{Fe}(1)-\mathrm{N}(3) \# 5$	77.3(2)
$\mathrm{N}(1) \# 4-\mathrm{Fe}(1)-\mathrm{N}(3) \# 4$	81.0(3)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{C})$	168.7(4)	$\mathrm{N}(1) \# 6-\mathrm{Fe}(1)-\mathrm{N}(3) \# 5$	167.7(2)
$\mathrm{N}(1) \# 3-\mathrm{Fe}(1)-\mathrm{N}(3) \# 4$	91.8(2)	$\mathrm{N}(1 \mathrm{C})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{C})$	76.6(3)	$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 5$	91.4(2)
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 4$	96.3(3)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{C})$	99.9(4)	$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 5$	100.89(17)
$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 3$	91.8(2)	$\mathrm{N}(1 \mathrm{~A})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~A})$	77.0 (4)	$\mathrm{N}(1) \# 5-\mathrm{Fe}(1)-\mathrm{N}(3) \# 6$	91.4(2)
$\mathrm{N}(1) \# 4-\mathrm{Fe}(1)-\mathrm{N}(3) \# 3$	171.8(3)	$\mathrm{N}(1 \mathrm{~B})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~A})$	91.3(4)	$\mathrm{N}(1) \# 6-\mathrm{Fe}(1)-\mathrm{N}(3) \# 6$	77.3(2)
$\mathrm{N}(1) \# 3-\mathrm{Fe}(1)-\mathrm{N}(3) \# 3$	81.0(3)	$\mathrm{N}(1 \mathrm{C})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~A})$	170.9(3)	$\mathrm{N}(1)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 6$	167.7(2)
$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 3$	96.3(3)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~A})$	97.9(3)	$\mathrm{N}(3)-\mathrm{Fe}(1)-\mathrm{N}(3) \# 6$	100.89(17)
$\mathrm{N}(3) \# 4-\mathrm{Fe}(1)-\mathrm{N}(3) \# 3$	96.3(3)	$\mathrm{N}(3 \mathrm{C})-\mathrm{Fe}(1)-\mathrm{N}(3 \mathrm{~A})$	99.9(3)	$\mathrm{N}(3) \# 5-\mathrm{Fe}(1)-\mathrm{N}(3) \# 6$	100.89(17)

Symmetry transformations used to generate equivalent atoms for $1 \mathrm{a}: ~ \# 3-z+1, x+1 / 2,-y+3 / 2 ; \# 4 y-1 / 2,-z+3 / 2,-$ $\mathrm{x}+1$; for 2: \#5 $-\mathrm{y}+1 / 2,-\mathrm{z}+1, \mathrm{x}+1 / 2 \quad \# 6 \mathrm{z}-1 / 2,-\mathrm{x}+1 / 2,-\mathrm{y}+1$

9. DFT calculations

Table S2. DFT calculated energy of different spin states for $\mathbf{1 a}, \mathbf{1 b}$ and $\mathbf{2}$.

	$\mathbf{1 a}$	$\mathbf{1 b}$	$\mathbf{2}$
$E_{H S} /$ a.u.	-2836.70949	-2836.74990	-2718.37369
$E_{L S} /$ a.u.	-2836.74154	-2836.70034	-2718.36454
$\Delta E_{H S-L S} / \mathrm{kJ} \mathrm{mol}^{-1}$	84.15	-130.10	-24.03

$\Delta E_{H S-L S}$ in negative value means high-spin state is more stable.

