Cationic Rhenium(III) Complexes: Synthesis, Characterization, and Reactivity for Hydrosilylation of Aldehydes

Damaris E. Pérez,^a Jessica L. Smeltz,^b Roger D. Sommer,^a Paul D. Boyle,^c and Elon A. Ison^a*

^a Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695-8204, United States.

^b Current Address: Department of Chemistry, Florida Institute of Technology, Melbourne, Florida 32901

^c Department of Chemistry, University of Western Ontario, London, Canada N6A 5B7

Table of Contests:

Table S1. Selected Crystallographic Data and Collection Parameters for 3a, 4b, and 6	S3
X-Ray Crystallographic Experimental for 3a	S4-S25
X-Ray Crystallographic Experimental for 4b	S26-S52
X-Ray Crystallographic Experimental for 6	S53-S64
NMR Data	S65-S89

	3 a	4b	6
Empirical Form	C54H29BF34N5ORe	C ₂₈ H _{40.50} BF ₄ N _{5.50} ORe	$C_{18}H_{12}Cl_2F_{10}N_3ORe$
Formula weight (g/mol)	1691.76	755.18	732.40
crystal system	monoclinic	monoclinic	orthorhombic
space group	$P 2_1/c$	P1 21/c 1	Pbca
<i>a</i> , Å	9.777(2)	22.3852(5)	12.2754(4)
b, Å	16.855(4)	14.7691(3)	18.8021(6)
<i>c</i> , Å	36.649(8)	19.6678(5)	18.9382(6)
Volume, $(Å^3)$	6021(2)	6305.8(3)	4371.0(2)
Z	4	8	8
ρ (g/cm ³)	1.866	1.591	2.226
crystal size (mm)	$0.39 \times 0.13 \times 0.09$	$0.043 \times 0.089 \times 0.268$	$0.13 \times 0.10 \times 0.04$
R1, w R2	0.0509, 0.1101	0.0270, 0.0542	0.0323, 0.0609
GOF	1.030	1.009	1.021

 Table S1. Selected Crystallographic Data and Collection Parameters for 3a and 4b

Experimental for C₅₄H₂₉BF₃₄N₅ORe (3a)

Data Collection and Processing. The sample (**3a**) was submitted by Jessica Smeltz of the Ison research group at North Carolina State University. The sample was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made on a Bruker-Nonius Kappa Axis X8 Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 9952 reflections with $4.82^{\circ} < 2\theta < 54.26^{\circ}$. The data collection strategy was a number of ω and φ scans which collected data up to 63.28° (2 θ). The frame integration was performed using SAINT.⁴ The resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.⁵

Structure Solution and Refinement. The structure was solved by direct methods using the XS program.⁶ Most non-hydrogen atoms were obtained from the initial solution with the missing atom positions recovered from a subsequent difference Fourier map. The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom. The structural model was fit to the data using full matrix least-squares based on F². The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from SHELXTL,⁷ graphic plots were produced using the NRCVAX crystallographic program suite. Additional information and other relevant literature references can be found in the reference section of the Facility's Web page (http://www.xray.ncsu.edu).

Acknowledgement

The authors wish to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the Apex2 diffractometer.

⁴ Bruker-Nonius, SAINT version 2009.9, 2009, Bruker-Nonius, Madison, WI 53711, USA

⁵ Bruker-Nonius, SADABS version 2009.9, 2009, Bruker-Nonius, Madison, WI 53711, USA

⁶ Bruker-AXS, XS version 2009.9, 2009, Bruker-AXS, Madison, WI 53711, USA

⁷ Bruker-AXS, XL version 2009.9, 2009, Bruker-AXS, Madison, WI 53711, USA

Figure S1. ORTEP drawing of **3a** showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S2. ORTEP drawing of **3a**. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S3. Stereoscopic ORTEP drawing of **3a**. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S4. ORTEP drawing of **3a counterion** (BAr^F₄) showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S5. ORTEP drawing of **3a solvent** showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with arbitrary radii for clarity.

Formula	C55H31BCl2F34N5ORe
Formula Weight (g/mol)	1691.76
Crystal Dimensions (mm)	$0.39 \times 0.13 \times 0.09$
Crystal Color and Habit	orange prism
Crystal System	monoclinic
Space Group	P 2 ₁ /c
Temperature, K	110
a, Å	9.777(2)
b, Å	16.855(4)
<i>c</i> , Å	36.649(8)
α,°	90.00
β,°	94.471(9)
γ,°	90.00
V, Å ³	6021(2)
Number of reflections to determine final unit cell	9952
Min and Max 20 for cell determination, °	4.82, 54.26
Z	4
F(000)	3296
ρ (g/cm)	1.866
λ, Å, (ΜοΚα)	0.71073
$u. (cm^{-1})$	2.259
Diffractometer Type	Bruker-Nonius Kappa Axis X8
51	Apex2
Scan Type(s)	omega and phi scans
Max 2 θ for data collection, °	63.28
Measured fraction of data	0.992
Number of reflections measured	97273
Unique reflections measured	19314
R _{merge}	0.0446
Number of reflections included in refinement	19314
Cut off Threshold Expression	>2sigma(I)
Structure refined using	full matrix least-squares using F ²
Weighting Scheme	calc
	$w=1/[sigma^2(Fo^2)+(0.0524P)^2+8.3]$
	576Pl where $P = (F_0^2 + 2F_0^2)/3$
Number of parameters in least-squares	895
R1	0.0509
wPo	0 1 1 0 1
WKZ	0.0007
	0.0907
wK ₂ (all data)	0.1242
GOF	1.030
Maximum shift/error	0.001
Min & Max peak heights on final ΔF Map ($e^{-/A}$)	-1.657, 1.571

Table S2. Summary of Crystal Data for 3a

Where: $R_1 = \Sigma (|F_0| - |F_c|) / \Sigma F_0$ $wR_2 = [\Sigma (w(F_0^2 - F_c^2)^2) / \Sigma (w F_0^4)]^{\frac{1}{2}}$ $GOF = [\Sigma (w(F_0^2 - F_c^2)^2) / (No. of reflns. - No. of params.)]^{\frac{1}{2}}$

Atom	Х	У	Z	Uiso/equiv
Re1	0.707117(15)	0.687237(10)	0.121710(4)	0.02466(5)
C1	0.8564(4)	0.7559(2)	0.12944(11)	0.0295(9)
01	0.9523(3)	0.79695(18)	0.13389(9)	0.0401(8)
N1	0.7563(3)	0.6532(2)	0.07413(9)	0.0265(7)
N2	0.5479(3)	0.5947(2)	0.11019(9)	0.0269(7)
N3	0.7790(3)	0.6064(2)	0.15512(10)	0.0327(8)
N4	0.5846(3)	0.7764(2)	0.09170(9)	0.0251(7)
N5	0.5937(4)	0.7360(2)	0.16330(10)	0.0393(9)
C2	0.8576(4)	0.6887(2)	0.05427(11)	0.0256(8)
C3	0.9970(4)	0.6826(3)	0.06557(12)	0.0314(9)
C4	1.0947(4)	0.7223(3)	0.04817(12)	0.0309(9)
C5	1.0589(4)	0.7692(2)	0.01821(11)	0.0260(8)
C6	0.9230(4)	0.7757(2)	0.00577(10)	0.0258(8)
C7	0.8250(4)	0.7352(2)	0.02372(10)	0.0242(8)
F3	1.0373(2)	0.63852(17)	0.09488(7)	0.0423(7)
F4	1.2288(2)	0.71638(18)	0.06011(8)	0.0467(7)
F5	1.1542(2)	0.80975(14)	0.00153(7)	0.0339(6)
F6	0.8869(2)	0.82250(15)	-0.02269(6)	0.0335(6)
F7	0.6924(2)	0.74475(15)	0.01157(6)	0.0334(6)
C8	0.6741(4)	0.5908(3)	0.05446(12)	0.0325(9)
C9	0.5335(4)	0.5871(3)	0.06931(11)	0.0340(10)
C10	0.4103(4)	0.6109(3)	0.12296(13)	0.0402(11)
C11	0.6049(5)	0.5194(3)	0.12699(14)	0.0418(11)
C12	0.6861(5)	0.5404(3)	0.16263(13)	0.0390(11)
C13	0.9147(4)	0.5987(2)	0.17168(11)	0.0266(8)
C14	0.9716(4)	0.6497(3)	0.19795(11)	0.0308(9)
C15	1.1067(5)	0.6418(3)	0.21233(12)	0.0395(11)
C16	1.1863(4)	0.5808(3)	0.20084(12)	0.0420(12)
C17	1.1330(5)	0.5285(3)	0.17488(12)	0.0401(11)
C18	0.9977(5)	0.5381(3)	0.16064(11)	0.0333(10)
F14	0.8975(3)	0.70986(16)	0.21007(7)	0.0426(7)
F15	1.1577(3)	0.6920(2)	0.23813(9)	0.0629(9)
F16	1.3161(3)	0.5737(2)	0.21510(8)	0.0645(10)
F17	1.2100(3)	0.46943(19)	0.16365(8)	0.0573(8)
F18	0.9497(3)	0.48692(16)	0.13512(7)	0.0461(7)
C19	0.5239(4)	0.8166(3)	0.07155(12)	0.0285(9)
C20	0.4507(4)	0.8691(3)	0.04534(13)	0.0358(10)
C21	0.5479(5)	0.7624(3)	0.18803(13)	0.0389(11)
C22	0.4672(10)	0.7964(4)	0.21509(19)	0.104(3)
B1	0.9522(4)	0.2167(3)	0.13141(12)	0.0219(8)
C23	0.9383(4)	0.2788(2)	0.09730(10)	0.0227(8)
C24	0.8138(4)	0.2894(2)	0.07628(10)	0.0239(8)
C25	0.7937(4)	0.3483(3)	0.04977(11)	0.0274(8)
C26	0.8990(4)	0.3984(2)	0.04202(11)	0.0292(9)
C27	1.0247(4)	0.3891(2)	0.06230(11)	0.0266(8)

C28	1.0429(4)	0.3321(2)	0.08954(10)	0.0234(8)
C29	0.6539(5)	0.3571(3)	0.03028(12)	0.0342(10)
F29A	0.6105(3)	0.29250(17)	0.01262(9)	0.0519(8)
F29B	0.5589(3)	0.3750(2)	0.05314(8)	0.0676(10)
F29C	0.6475(3)	0.4160(2)	0.00586(9)	0.0685(10)
C30	1.1414(5)	0.4408(3)	0.05423(12)	0.0360(10)
F30A	1.1035(4)	0.5148(2)	0.04534(13)	0.0937(14)
F30B	1.2347(4)	0.4497(3)	0.08099(10)	0.0985(16)
F30C	1 2028(4)	0.4185(2)	0.02603(12)	0 114(2)
C31	1.1093(4)	0.1846(2)	0.14142(10)	0.0230(7)
C32	1.1545(4)	0.1557(2)	0.17585(11)	0.0267(8)
C33	1 2828(4)	0.1204(2)	0.18271(11)	0.0291(9)
C34	1.2020(1) 1.3703(4)	0.1130(3)	0.15537(11)	0.0291(9)
C35	1 3279(4)	0.1398(2)	0.12061(11)	0.02(3(8))
C36	1.3279(1) 1.1992(4)	0.1747(2)	0.11387(11)	0.0249(8)
C37	1 3259(5)	0.0891(3)	0.22010(13)	0.0219(0) 0.0424(12)
F37A	1.2278(5)	0.1056(3)	0.22010(12)	0.127(2)
F37B	1.2470(3) 1.3348(5)	0.1050(3) 0.0105(2)	0.2102(0) 0.22022(9)	0.027(2) 0.0853(12)
F37C	1.5510(5) 1 4529(4)	0.0103(2) 0.1092(3)	0.22022(9) 0.23106(11)	0.0039(12) 0.1080(17)
C38	1.1329(1) 1.4206(4)	0.1092(3) 0.1303(3)	0.29100(11) 0.09036(13)	0.0382(11)
E38A	1.4200(4) 1 5448(3)	0.1505(3) 0.1568(2)	0.09030(13) 0.09875(9)	0.0502(11) 0.0647(9)
F38B	1.3110(3) 1 4439(5)	0.0540(3)	0.09075(9)	0.0017(9)
F38C	1.7759(3) 1.3760(4)	0.0510(5) 0.1598(4)	0.000000(10)	0.143(3)
C39	0.8859(4)	0.1550(1) 0.2653(2)	0.00002(9) 0.16443(10)	0.0221(8)
C40	0.0009(1) 0.9643(4)	0.2033(2) 0.3072(2)	0.10113(10) 0.19177(10)	0.0221(0) 0.0242(8)
C41	0.9037(4)	0.3539(2)	0.21723(10)	0.0269(8)
C42	0.7624(4)	0.3629(2)	0.21725(10) 0.21566(11)	0.0269(8)
C43	0.6833(4)	0.3239(2)	0.18861(11)	0.0207(0)
C44	0.7437(4)	0.2745(2)	0.16396(10)	0.0252(8)
C45	0.9896(5)	0.291(3)	0.24722(12)	0.0348(10)
F45A	1 1222(3)	0.3921(2)	0.24544(8)	0.0510(10)
F45B	0.9721(3)	0.3021(2) 0.47377(18)	0.24625(8)	0.0554(8)
F45C	0.9721(3) 0.9570(3)	0.37283(18)	0.28023(7)	0.0516(8)
C46	0.5301(4)	0.3334(3)	0.18522(12)	0.0316(9)
F46A	0.3301(1) 0.4784(3)	0.33795(18)	0.16022(12) 0.15045(8)	0.0310(3) 0.0471(7)
F46B	0.4898(3)	0.39861(16)	0.10010(8)	0.0495(7)
F46C	0.4662(3)	0.27240(17)	0.20210(0) 0.20002(8)	0.0469(7)
C47	0.8679(3)	0.27210(17) 0.1338(2)	0.20002(0) 0.12195(10)	0.0219(8)
C48	0.8079(3) 0.8172(4)	0.0881(2)	0.12199(10) 0.14934(10)	0.0219(0) 0.0221(8)
C49	0.0172(1) 0.7601(4)	0.0001(2) 0.0140(2)	0.14269(11)	0.0221(0) 0.0230(8)
C50	0.7510(4)	-0.0177(2)	0.10753(11)	0.0236(8)
C51	0.7991(4)	0.0268(2)	0.07953(10)	0.0239(8) 0.0240(8)
C52	0.7551(1) 0.8568(4)	0.0200(2) 0.1012(2)	0.07955(10) 0.08667(11)	0.0210(0) 0.0238(8)
C53	0.0000(1) 0.7075(4)	-0.0345(3)	0.00007(11) 0.17291(11)	0.0293(9)
E53A	0.7745(3)	-0.10176(16)	0.17291(11) 0.17884(7)	0.0295(9)
F53R	0.7105(4)	0.00323(17)	0.17001(7) 0.20480(8)	0.0604(9)
F53C	0 5756(3)	-0.0559(2)	0 16514(9)	0.0603(9)
C54	0.7812(4)	-0.0028(3)	0.04115(12)	0.0319(9)
F54A	0.6646(3)	0.0020(3)	0.02328(7)	0.0476(7)
F54B	0 7719(3)	-0.08225(15)	0.03925(7)	0.0401(6)
	~~ / / / /	·····		

F54C	0.8818(3)	0.01877(17)	0.02059(7)	0.0501(8)
C1X	0.1462(6)	0.9431(4)	0.1212(2)	0.079(2)
Cl1X	0.12453(16)	0.94941(12)	0.07401(6)	0.0870(6)
Cl2X	0.2811(2)	0.8762(2)	0.13455(6)	0.1392(11)
H8A	0.7208	0.5390	0.0579	0.039
H8B	0.6644	0.6030	0.0280	0.039
H9A	0.4751	0.6305	0.0586	0.041
H9B	0.4888	0.5360	0.0624	0.041
H10A	0.3468	0.5687	0.1144	0.060
H10B	0.3766	0.6620	0.1132	0.060
H10C	0.4167	0.6127	0.1498	0.060
H11A	0.6652	0.4932	0.1102	0.050
H11B	0.5294	0.4826	0.1317	0.050
H12A	0.6232	0.5566	0.1812	0.047
H12B	0.7397	0.4939	0.1721	0.047
H20A	0.4648	0.9243	0.0532	0.054
H20B	0.3525	0.8566	0.0440	0.054
H20C	0.4854	0.8618	0.0212	0.054
H22A	0.5276	0.8239	0.2336	0.156
H22B	0.4174	0.7542	0.2268	0.156
H22C	0.4015	0.8342	0.2034	0.156
H24	0.7396	0.2549	0.0803	0.029
H26	0.8865	0.4378	0.0235	0.035
H28	1.1289	0.3289	0.1034	0.028
H32	1.0961	0.1602	0.1953	0.032
H34	1.4585	0.0898	0.1602	0.035
H36	1.1715	0.1922	0.0898	0.030
H40	1.0615	0.3035	0.1929	0.029
H42	0.7211	0.3953	0.2329	0.032
H44	0.6864	0.2462	0.1463	0.030
H48	0.8221	0.1084	0.1736	0.027
H50	0.7126	-0.0688	0.1029	0.028
H52	0.8896	0.1307	0.0671	0.029
H1X1	0.0600	0.9246	0.1309	0.095
H1X2	0.1681	0.9963	0.1316	0.095

Atom	u ¹¹	u ²²	u ³³	u ¹²	u ¹³	u ²³
Re1	0.02228(7)	0.02352(9)	0.02752(8)	-0.00443(7)	-0.00228(5)	0.00084(7)
C1	0.038(2)	0.021(2)	0.029(2)	-0.0052(18)	0.0007(17)	0.0026(17)
01	0.0384(17)	0.0329(18)	0.048(2)	-0.0154(14)	-0.0024(15)	-0.0026(15)
N1	0.0226(15)	0.0228(17)	0.0341(19)	-0.0021(14)	0.0031(14)	0.0006(15)
N2	0.0243(16)	0.0301(19)	0.0258(17)	-0.0083(14)	-0.0012(13)	-0.0011(14)
N3	0.0310(18)	0.0276(19)	0.037(2)	-0.0098(15)	-0.0095(15)	0.0070(16)
N4	0.0255(16)	0.0241(18)	0.0257(17)	-0.0010(14)	0.0013(13)	0.0004(14)
N5	0.060(3)	0.036(2)	0.0226(18)	0.0004(19)	0.0092(18)	-0.0015(16)
C2	0.0230(17)	0.0219(19)	0.032(2)	0.0006(16)	0.0054(15)	-0.0022(17)
C3	0.0274(19)	0.033(2)	0.034(2)	0.0050(18)	0.0035(17)	0.0107(19)
C4	0.0197(18)	0.037(2)	0.036(2)	0.0029(17)	0.0020(16)	0.005(2)
C5	0.0243(18)	0.027(2)	0.028(2)	-0.0017(16)	0.0065(15)	-0.0003(17)
C6	0.0290(19)	0.029(2)	0.0193(18)	0.0028(17)	0.0013(15)	-0.0040(16)
C7	0.0198(17)	0.027(2)	0.0252(19)	0.0019(15)	-0.0009(14)	-0.0066(16)
F3	0.0290(13)	0.0509(17)	0.0474(16)	0.0096(12)	0.0060(11)	0.0224(14)
F4	0.0198(12)	0.070(2)	0.0497(17)	0.0038(12)	0.0002(11)	0.0196(15)
F5	0.0270(12)	0.0430(15)	0.0323(13)	-0.0061(11)	0.0059(10)	0.0040(11)
F6	0.0342(13)	0.0425(16)	0.0236(12)	0.0035(11)	0.0010(10)	0.0072(11)
F7	0.0205(11)	0.0456(16)	0.0331(13)	-0.0001(10)	-0.0040(9)	-0.0023(12)
C8	0.034(2)	0.027(2)	0.038(2)	-0.0048(18)	0.0078(18)	-0.0047(19)
C9	0.035(2)	0.038(3)	0.029(2)	-0.0121(19)	0.0024(18)	-0.0033(19)
C10	0.031(2)	0.050(3)	0.040(3)	-0.016(2)	0.0027(19)	0.000(2)
C11	0.042(2)	0.030(3)	0.052(3)	-0.011(2)	-0.009(2)	0.012(2)
C12	0.040(2)	0.031(2)	0.044(3)	-0.014(2)	-0.012(2)	0.015(2)
C13	0.0288(19)	0.028(2)	0.0226(19)	-0.0038(17)	-0.0023(16)	0.0021(16)
C14	0.031(2)	0.033(2)	0.029(2)	-0.0055(18)	0.0045(17)	-0.0043(18)
C15	0.034(2)	0.054(3)	0.029(2)	-0.012(2)	-0.0058(18)	-0.008(2)
C16	0.023(2)	0.071(4)	0.031(2)	0.000(2)	0.0005(17)	0.003(2)
C17	0.043(3)	0.047(3)	0.031(2)	0.017(2)	0.009(2)	0.006(2)
C18	0.044(2)	0.032(2)	0.022(2)	0.000(2)	-0.0040(18)	-0.0008(17)
F14	0.0427(15)	0.0406(15)	0.0455(16)	-0.0008(12)	0.0093(12)	-0.0167(13)
F15	0.0512(18)	0.082(3)	0.0518(19)	-0.0153(16)	-0.0170(15)	-0.0274(17)
F16	0.0264(14)	0.112(3)	0.0543(19)	0.0043(16)	-0.0050(12)	0.0139(19)
F17	0.0635(19)	0.057(2)	0.0528(18)	0.0307(16)	0.0133(15)	0.0063(15)
F18	0.0710(19)	0.0331(15)	0.0323(14)	0.0037(14)	-0.0081(13)	-0.0093(12)
C19	0.0228(18)	0.029(2)	0.034(2)	-0.0056(17)	0.0018(16)	-0.0046(19)
C20	0.029(2)	0.031(2)	0.045(3)	-0.0015(18)	-0.0081(19)	0.005(2)
C21	0.047(3)	0.030(2)	0.040(3)	-0.007(2)	0.006(2)	0.001(2)
C22	0.171(8)	0.088(5)	0.064(4)	0.054(5)	0.079(5)	0.023(4)
B1	0.0197(18)	0.026(2)	0.020(2)	-0.0001(17)	0.0012(15)	-0.0004(17)
C23	0.0247(17)	0.022(2)	0.0220(18)	-0.0006(15)	0.0027(15)	-0.0030(15)
C24	0.0266(18)	0.0213(19)	0.0235(19)	-0.0009(15)	0.0007(15)	-0.0016(15)
C25	0.034(2)	0.026(2)	0.0221(19)	0.0025(18)	-0.0007(16)	-0.0038(16)
C26	0.042(2)	0.025(2)	0.0214(19)	0.0006(18)	0.0042(17)	0.0023(16)
C27	0.033(2)	0.024(2)	0.0242(19)	-0.0032(17)	0.0060(16)	-0.0041(16)
C28	0.0251(18)	0.023(2)	0.0223(18)	-0.0041(15)	0.0015(15)	-0.0060(15)

C29	0.039(2)	0.033(3)	0.029(2)	0.005(2)	-0.0077(19)	0.0007(19)
F29A	0.0384(15)	0.0432(17)	0.070(2)	0.0041(13)	-0.0196(14)	-0.0177(15)
F29B	0.0392(16)	0.110(3)	0.0526(19)	0.0341(17)	-0.0050(14)	-0.0127(19)
F29C	0.070(2)	0.060(2)	0.069(2)	-0.0093(17)	-0.0367(17)	0.0305(18)
C30	0.047(3)	0.028(2)	0.033(2)	-0.007(2)	0.006(2)	-0.0060(19)
F30A	0.079(3)	0.040(2)	0.167(4)	-0.0115(18)	0.042(3)	0.032(2)
F30B	0.090(3)	0.125(4)	0.075(2)	-0.081(3)	-0.030(2)	0.050(2)
F30C	0.135(4)	0.100(3)	0.121(3)	-0.086(3)	0.106(3)	-0.078(3)
C31	0.0211(16)	0.0218(19)	0.0255(19)	-0.0052(15)	-0.0023(14)	-0.0039(16)
C32	0.0263(19)	0.027(2)	0.026(2)	-0.0018(17)	-0.0011(16)	-0.0012(17)
C33	0.0291(19)	0.026(2)	0.031(2)	-0.0007(17)	-0.0052(17)	0.0015(17)
C34	0.0203(17)	0.031(2)	0.035(2)	0.0026(16)	-0.0049(16)	0.0009(18)
C35	0.0187(17)	0.030(2)	0.030(2)	-0.0023(16)	-0.0005(15)	-0.0021(17)
C36	0.0192(16)	0.029(2)	0.026(2)	-0.0048(15)	-0.0025(15)	-0.0007(16)
C37	0.042(3)	0.046(3)	0.037(3)	0.012(2)	-0.009(2)	0.010(2)
F37A	0.144(4)	0.213(5)	0.0257(17)	0.135(4)	0.017(2)	0.030(2)
F37B	0.143(4)	0.057(2)	0.056(2)	0.019(2)	0.007(2)	0.0273(18)
F37C	0.093(3)	0.138(4)	0.083(3)	-0.041(3)	-0.056(2)	0.063(3)
C38	0.0193(19)	0.058(3)	0.037(3)	0.0061(19)	-0.0002(17)	-0.004(2)
F38A	0.0316(15)	0.102(3)	0.062(2)	-0.0201(16)	0.0153(14)	-0.0211(19)
F38B	0.116(3)	0.084(3)	0.145(4)	-0.032(3)	0.089(3)	-0.063(3)
F38C	0.055(2)	0.335(8)	0.041(2)	0.097(3)	0.0275(17)	0.060(3)
C39	0.0291(18)	0.0176(18)	0.0195(17)	-0.0008(15)	0.0007(15)	0.0015(14)
C40	0.0231(17)	0.027(2)	0.0226(18)	-0.0027(16)	0.0001(14)	0.0010(16)
C41	0.036(2)	0.026(2)	0.0176(18)	-0.0043(18)	-0.0011(16)	-0.0002(16)
C42	0.034(2)	0.022(2)	0.026(2)	-0.0013(17)	0.0085(17)	-0.0026(16)
C43	0.0241(17)	0.021(2)	0.028(2)	0.0005(15)	0.0048(15)	0.0031(15)
C44	0.0294(19)	0.023(2)	0.0228(19)	-0.0049(16)	0.0013(15)	-0.0005(16)
C45	0.042(2)	0.036(3)	0.027(2)	-0.005(2)	0.0053(19)	-0.0085(19)
F45A	0.0393(16)	0.107(3)	0.0482(18)	-0.0083(17)	-0.0071(13)	-0.0392(19)
F45B	0.085(2)	0.0358(17)	0.0444(17)	-0.0198(16)	-0.0004(15)	-0.0107(13)
F45C	0.072(2)	0.062(2)	0.0203(13)	-0.0195(16)	-0.0026(13)	-0.0007(13)
C46	0.029(2)	0.028(2)	0.038(2)	-0.0027(17)	0.0087(18)	-0.0016(18)
F46A	0.0338(14)	0.0637(19)	0.0428(16)	0.0114(13)	-0.0025(12)	0.0004(14)
F46B	0.0372(14)	0.0391(17)	0.074(2)	0.0059(12)	0.0156(14)	-0.0196(15)
F46C	0.0360(14)	0.0421(17)	0.0639(19)	-0.0094(12)	0.0116(13)	0.0076(14)
C47	0.0156(15)	0.023(2)	0.0265(19)	0.0019(14)	0.0001(14)	-0.0011(16)
C48	0.0192(16)	0.026(2)	0.0207(18)	0.0014(15)	-0.0004(14)	-0.0009(15)
C49	0.0175(16)	0.024(2)	0.028(2)	-0.0009(15)	0.0004(14)	0.0035(16)
C50	0.0208(17)	0.0181(19)	0.031(2)	-0.0024(15)	0.0003(15)	-0.0019(16)
C51	0.0217(17)	0.026(2)	0.0242(19)	0.0017(15)	0.0022(15)	-0.0046(16)
C52	0.0193(16)	0.026(2)	0.026(2)	0.0013(15)	0.0018(14)	-0.0014(16)
C53	0.031(2)	0.027(2)	0.029(2)	-0.0005(17)	0.0013(17)	0.0018(17)
F53A	0.0550(17)	0.0420(16)	0.0432(16)	0.0188(14)	0.0072(13)	0.0197(13)
F53B	0.109(3)	0.0381(17)	0.0393(16)	-0.0151(17)	0.0365(17)	-0.0057(13)
F53C	0.0324(14)	0.073(2)	0.074(2)	-0.0171(14)	-0.0029(13)	0.0422(18)
C54	0.033(2)	0.028(2)	0.036(2)	-0.0035(18)	0.0100(18)	-0.0043(19)
F54A	0.0551(17)	0.0522(18)	0.0328(14)	0.0084(14)	-0.0127(13)	-0.0063(13)
F54B	0.0535(16)	0.0283(14)	0.0387(15)	-0.0039(12)	0.0051(12)	-0.0113(11)
F54C	0.0582(18)	0.0548(19)	0.0405(15)	-0.0213(15)	0.0245(13)	-0.0184(14)
	× /	· /	× /		× /	· /

C1X	0.053(4)	0.060(4)	0.126(6)	-0.030(3)	0.023(4)	-0.043(4)
Cl1X	0.0472(8)	0.0976(14)	0.1158(16)	0.0201(9)	0.0029(9)	-0.0302(12)
Cl2X	0.0496(10)	0.280(4)	0.0865(15)	0.0051(15)	-0.0063(9)	0.0034(19)

Table S5. Bond Lengths for 3a

Re1-C1	1.867(4)	C25-C29	1.500(6)
Re1-N3	1.928(3)	C26-C27	1.394(6)
Re1-N1	1.932(3)	C26-H26	0.9500
Re1-N5	2.120(4)	C27-C28	1.387(5)
Re1-N4	2.167(3)	C27-C30	1.484(6)
Re1-N2	2.220(3)	C28-H28	0.9500
C1-O1	1.166(5)	C29-F29A	1.319(5)
N1-C2	1.408(5)	C29-F29B	1.333(5)
N1-C8	1.476(5)	C29-F29C	1.335(5)
N2-C10	1.484(5)	C30-F30C	1.292(5)
N2-C11	1.499(6)	C30-F30B	1.295(6)
N2-C9	1.499(5)	C30-F30A	1.334(6)
N3-C13	1.421(5)	C31-C32	1.392(5)
N3-C12	1.475(5)	C31-C36	1.399(5)
N4-C19	1.136(5)	C32-C33	1.393(5)
N5-C21	1.133(5)	С32-Н32	0.9500
C2-C7	1.384(6)	C33-C34	1.373(6)
C2-C3	1.397(6)	C33-C37	1.498(6)
C3-F3	1.340(5)	C34-C35	1.384(6)
C3-C4	1.364(6)	C34-H34	0.9500
C4-F4	1.354(4)	C35-C36	1.394(5)
C4-C5	1.375(6)	C35-C38	1.494(6)
C5-F5	1.341(4)	С36-Н36	0.9500
C5-C6	1.375(5)	C37-F37A	1.263(6)
C6-F6	1.333(4)	C37-F37C	1.320(6)
C6-C7	1.384(5)	C37-F37B	1.327(6)
C7-F7	1.348(4)	C38-F38C	1.264(6)
C8-C9	1.519(6)	C38-F38A	1.309(5)
C8-H8A	0.9900	C38-F38B	1.333(6)
C8-H8B	0.9900	C39-C44	1.398(5)
С9-Н9А	0.9900	C39-C40	1.404(5)
C9-H9B	0.9900	C40-C41	1.388(5)
C10-H10A	0.9800	C40-H40	0.9500
C10-H10B	0.9800	C41-C42	1.386(6)
C10-H10C	0.9800	C41-C45	1.501(6)
C11-C12	1.516(6)	C42-C43	1.376(6)
C11-H11A	0.9900	C42-H42	0.9500
C11-H11B	0.9900	C43-C44	1.393(5)
C12-H12A	0.9900	C43-C46	1.502(6)
C12-H12B	0.9900	C44-H44	0.9500
C13-C14	1.376(6)	C45-F45A	1.322(5)
C13-C18	1.384(6)	C45-F45C	1.329(5)
C14-F14	1.342(5)	C45-F45B	1.336(5)
C14-C15	1.390(6)	C46-F46B	1.336(5)
C15-F15	1.336(5)	C46-F46A	1.336(5)
C15-C16	1.375(7)	C46-F46C	1.339(5)
C16-F16	1.339(5)	C47-C48	1.387(5)
C16-C17	1.370(7)	C47-C52	1.401(5)

C17-F17	1.333(5)	C48-C49	1.381(5)
C17-C18	1.393(6)	C48-H48	0.9500
C18-F18	1.331(5)	C49-C50	1.392(5)
C19-C20	1.452(6)	C49-C53	1.500(5)
C20-H20A	0.9800	C50-C51	1.383(5)
C20-H20B	0.9800	C50-H50	0.9500
C20-H20C	0.9800	C51-C52	1.391(5)
C21-C22	1.433(7)	C51-C54	1.490(6)
C22-H22A	0.9800	C52-H52	0.9500
C22-H22B	0.9800	C53-F53A	1.319(5)
C22-H22C	0.9800	C53-F53B	1.329(5)
B1-C23	1.628(6)	C53-F53C	1.348(5)
B1-C39	1.637(6)	C54-F54C	1.335(5)
B1-C31	1.642(6)	C54-F54B	1.343(5)
B1-C47	1.645(6)	C54-F54A	1.349(5)
C23-C24	1.400(5)	C1X-Cl1X	1.730(8)
C23-C28	1.407(5)	C1X-Cl2X	1.775(8)
C24-C25	1.392(6)	C1X-H1X1	0.9900
C24-H24	0.9500	C1X-H1X2	0.9900
C25-C26	1.378(6)		

Table S6. Bond Angles for 3a

C1-Re1-N3	95.74(16)	С23-С24-Н24	118.5
C1-Re1-N1	94.26(16)	C26-C25-C24	120.9(4)
N3-Re1-N1	105.04(15)	C26-C25-C29	120.6(4)
C1-Re1-N5	95.58(17)	C24-C25-C29	118.5(4)
N3-Re1-N5	90.15(16)	C25-C26-C27	117.6(4)
N1-Re1-N5	160.96(15)	C25-C26-H26	121.2
C1-Re1-N4	92.40(15)	С27-С26-Н26	121.2
N3-Re1-N4	166.44(14)	C28-C27-C26	121.3(4)
N1-Re1-N4	85.09(13)	C28-C27-C30	119.6(4)
N5-Re1-N4	78.26(14)	C26-C27-C30	119.1(4)
C1-Re1-N2	172.91(16)	C27-C28-C23	122.2(4)
N3-Re1-N2	80.77(13)	C27-C28-H28	118.9
N1-Re1-N2	80.79(13)	С23-С28-Н28	118.9
N5-Re1-N2	90.62(14)	F29A-C29-F29B	106.4(4)
N4-Re1-N2	92.22(13)	F29A-C29-F29C	106.8(4)
O1-C1-Re1	177.9(4)	F29B-C29-F29C	104.7(4)
C2-N1-C8	115.3(3)	F29A-C29-C25	113.5(4)
C2-N1-Re1	125.1(3)	F29B-C29-C25	112.1(3)
C8-N1-Re1	119.2(2)	F29C-C29-C25	112.7(4)
C10-N2-C11	110.1(3)	F30C-C30-F30B	107.2(5)
C10-N2-C9	108.3(3)	F30C-C30-F30A	102.4(4)
C11-N2-C9	109.9(3)	F30B-C30-F30A	104.0(4)
C10-N2-Re1	116.8(3)	F30C-C30-C27	113.6(4)
C11-N2-Re1	106.5(2)	F30B-C30-C27	115.1(4)
C9-N2-Re1	105.1(2)	F30A-C30-C27	113.3(4)
C13-N3-C12	114.8(3)	C32-C31-C36	116.0(3)
C13-N3-Re1	128.1(3)	C32-C31-B1	122.9(3)
C12-N3-Re1	116.9(3)	C36-C31-B1	120.5(3)
C19-N4-Re1	169.9(3)	C31-C32-C33	122.1(4)
C21-N5-Re1	171.6(4)	С31-С32-Н32	119.0
C7-C2-C3	116.1(3)	С33-С32-Н32	119.0
C7-C2-N1	122.1(3)	C34-C33-C32	120.7(4)
C3-C2-N1	121.7(4)	C34-C33-C37	119.2(4)
F3-C3-C4	118.3(4)	C32-C33-C37	120.0(4)
F3-C3-C2	119.8(4)	C33-C34-C35	118.9(4)
C4-C3-C2	121.8(4)	С33-С34-Н34	120.6
F4-C4-C3	120.6(4)	С35-С34-Н34	120.6
F4-C4-C5	118.7(4)	C34-C35-C36	120.1(4)
C3-C4-C5	120.8(4)	C34-C35-C38	119.5(4)
F5-C5-C4	121.0(3)	C36-C35-C38	120.3(4)
F5-C5-C6	119.7(4)	C35-C36-C31	122.1(4)
C4-C5-C6	119.3(4)	С35-С36-Н36	118.9
F6-C6-C5	119.8(4)	С31-С36-Н36	118.9
F6-C6-C7	120.8(3)	F37A-C37-F37C	109.4(5)
C5-C6-C7	119.3(4)	F37A-C37-F37B	105.1(5)
F7-C7-C2	119.4(3)	F37C-C37-F37B	101.2(4)
F7-C7-C6	117.9(3)	F37A-C37-C33	116.0(4)
C2-C7-C6	122.7(3)	F37C-C37-C33	112.2(4)

N1-C8-C9	109.2(3)	F37B-C37-C33	111.6(4)
N1-C8-H8A	109.8	F38C-C38-F38A	108.8(5)
С9-С8-Н8А	109.8	F38C-C38-F38B	105.5(5)
N1-C8-H8B	109.8	F38A-C38-F38B	101.8(4)
С9-С8-Н8В	109.8	F38C-C38-C35	115.1(4)
H8A-C8-H8B	108.3	F38A-C38-C35	113.2(4)
N2-C9-C8	109.7(3)	F38B-C38-C35	111.4(4)
N2-C9-H9A	109.7	C44-C39-C40	116.1(3)
С8-С9-Н9А	109.7	C44-C39-B1	119.8(3)
N2-C9-H9B	109.7	C40-C39-B1	123.7(3)
С8-С9-Н9В	109.7	C41-C40-C39	121.8(4)
Н9А-С9-Н9В	108.2	С41-С40-Н40	119.1
N2-C10-H10A	109.5	С39-С40-Н40	119.1
N2-C10-H10B	109.5	C42-C41-C40	120.7(4)
H10A-C10-H10B	109.5	C42-C41-C45	118.6(4)
N2-C10-H10C	109.5	C40-C41-C45	120.7(4)
H10A-C10-H10C	109.5	C43-C42-C41	118.7(4)
H10B-C10-H10C	109.5	C43-C42-H42	120.6
N2-C11-C12	108.0(4)	C41-C42-H42	120.6
N2-C11-H11A	110.1	C42-C43-C44	120.7(4)
C12-C11-H11A	110.1	C42-C43-C46	120.7(4)
N2-C11-H11B	110.1	C44-C43-C46	118.7(4)
C12-C11-H11B	110.1	C43-C44-C39	122.0(4)
H11A-C11-H11B	108.4	C43-C44-H44	119.0
N3-C12-C11	107.7(4)	C39-C44-H44	119.0
N3-C12-H12A	110.2	F45A-C45-F45C	107.7(4)
C11-C12-H12A	110.2	F45A-C45-F45B	106.7(4)
N3-C12-H12B	110.2	F45C-C45-F45B	105.4(4)
C11-C12-H12B	110.2	F45A-C45-C41	112.5(4)
H12A-C12-H12B	108.5	F45C-C45-C41	112.1(4)
C14-C13-C18	116.8(4)	F45B-C45-C41	112.1(4)
C14-C13-N3	123.7(4)	F46B-C46-F46A	106.9(4)
C18-C13-N3	119.5(4)	F46B-C46-F46C	106.3(3)
F14-C14-C13	120.3(4)	F46A-C46-F46C	106.1(4)
F14-C14-C15	117.9(4)	F46B-C46-C43	112.2(4)
C13-C14-C15	121.8(4)	F46A-C46-C43	112.7(3)
F15-C15-C16	120.1(4)	F46C-C46-C43	112.3(4)
F15-C15-C14	119.9(4)	C48-C47-C52	116.3(4)
C16-C15-C14	120.0(4)	C48-C47-B1	121.4(3)
F16-C16-C17	120.7(5)	C52-C47-B1	122.0(3)
F16-C16-C15	119.3(4)	C49-C48-C47	122.5(4)
C17-C16-C15	120.0(4)	C49-C48-H48	118.8
F17-C17-C16	120.1(4)	C47-C48-H48	118.8
F17-C17-C18	121.0(5)	C48-C49-C50	120.4(3)
C16-C17-C18	119.0(4)	C48-C49-C53	121.3(4)
F18-C18-C13	120.0(4)	C50-C49-C53	118.3(3)
F18-C18-C17	117.4(4)	C51-C50-C49	118.6(4)
C13-C18-C17	122.5(4)	С51-С50-Н50	120.7
N4-C19-C20	178.0(5)	С49-С50-Н50	120.7
C19-C20-H20A	109.5	C50-C51-C52	120.3(4)

С19-С20-Н20В	109.5	C50-C51-C54	119.8(4)
H20A-C20-H20B	109.5	C52-C51-C54	119.7(4)
С19-С20-Н20С	109.5	C51-C52-C47	121.9(4)
H20A-C20-H20C	109.5	С51-С52-Н52	119.0
H20B-C20-H20C	109.5	С47-С52-Н52	119.0
N5-C21-C22	169.6(6)	F53A-C53-F53B	106.8(3)
C21-C22-H22A	109.5	F53A-C53-F53C	105.0(3)
C21-C22-H22B	109.5	F53B-C53-F53C	105.6(4)
H22A-C22-H22B	109.5	F53A-C53-C49	113.3(3)
С21-С22-Н22С	109.5	F53B-C53-C49	113.8(3)
H22A-C22-H22C	109.5	F53C-C53-C49	111.6(3)
H22B-C22-H22C	109.5	F54C-C54-F54B	107.0(3)
C23-B1-C39	103.4(3)	F54C-C54-F54A	105.4(4)
C23-B1-C31	113.8(3)	F54B-C54-F54A	105.0(3)
C39-B1-C31	114.6(3)	F54C-C54-C51	113.8(3)
C23-B1-C47	111.9(3)	F54B-C54-C51	112.7(4)
C39-B1-C47	111.1(3)	F54A-C54-C51	112.2(3)
C31-B1-C47	102.3(3)	Cl1X-C1X-Cl2X	110.1(4)
C24-C23-C28	114.9(4)	Cl1X-C1X-H1X1	109.6
C24-C23-B1	121.5(3)	Cl2X-C1X-H1X1	109.6
C28-C23-B1	123.2(3)	Cl1X-C1X-H1X2	109.6
C25-C24-C23	123.0(4)	Cl2X-C1X-H1X2	109.6
С25-С24-Н24	118.5	H1X1-C1X-H1X2	108.1

Table S7. Torsion Angles for 3a

N3-Re1-C1-O1	60(11)	C39-B1-C23-C24	-79.2(4)
N1-Re1-C1-O1	-46(11)	C31-B1-C23-C24	155.8(3)
N5-Re1-C1-O1	150(11)	C47-B1-C23-C24	40.5(5)
N4-Re1-C1-O1	-131(11)	C39-B1-C23-C28	92.8(4)
N2-Re1-C1-O1	0(12)	C31-B1-C23-C28	-32.2(5)
C1-Re1-N1-C2	-10.8(3)	C47-B1-C23-C28	-147.6(3)
N3-Re1-N1-C2	-107.9(3)	C28-C23-C24-C25	-0.3(6)
N5-Re1-N1-C2	110.2(5)	B1-C23-C24-C25	172.3(4)
N4-Re1-N1-C2	81.2(3)	C23-C24-C25-C26	2.1(6)
N2-Re1-N1-C2	174.3(3)	C23-C24-C25-C29	-176.8(4)
C1-Re1-N1-C8	176.0(3)	C24-C25-C26-C27	-1.5(6)
N3-Re1-N1-C8	78.9(3)	C29-C25-C26-C27	177.3(4)
N5-Re1-N1-C8	-63.0(6)	C25-C26-C27-C28	-0.6(6)
N4-Re1-N1-C8	-91.9(3)	C25-C26-C27-C30	178.8(4)
N2-Re1-N1-C8	1.1(3)	C26-C27-C28-C23	2.5(6)
C1-Re1-N2-C10	170.6(11)	C30-C27-C28-C23	-176.9(4)
N3-Re1-N2-C10	109.6(3)	C24-C23-C28-C27	-1.9(5)
N1-Re1-N2-C10	-143.3(3)	B1-C23-C28-C27	-174.4(4)
N5-Re1-N2-C10	19.6(3)	C26-C25-C29-F29A	122.0(4)
N4-Re1-N2-C10	-58.7(3)	C24-C25-C29-F29A	-59.2(5)
C1-Re1-N2-C11	47.2(13)	C26-C25-C29-F29B	-117.4(5)
N3-Re1-N2-C11	-13.7(3)	C24-C25-C29-F29B	61.4(5)
N1-Re1-N2-C11	93.3(3)	C26-C25-C29-F29C	0.5(6)
N5-Re1-N2-C11	-103.8(3)	C24-C25-C29-F29C	179.3(4)
N4-Re1-N2-C11	177.9(3)	C28-C27-C30-F30C	99.7(5)
C1-Re1-N2-C9	-69.4(13)	C26-C27-C30-F30C	-79.7(6)
N3-Re1-N2-C9	-130.4(3)	C28-C27-C30-F30B	-24.4(6)
N1-Re1-N2-C9	-23.3(3)	C26-C27-C30-F30B	156.2(4)
N5-Re1-N2-C9	139.6(3)	C28-C27-C30-F30A	-144.0(4)
N4-Re1-N2-C9	61.3(3)	C26-C27-C30-F30A	36.6(6)
C1-Re1-N3-C13	-12.9(4)	C23-B1-C31-C32	156.3(4)
N1-Re1-N3-C13	83.1(4)	C39-B1-C31-C32	37.5(5)
N5-Re1-N3-C13	-108.6(4)	C47-B1-C31-C32	-82.8(4)
N4-Re1-N3-C13	-139.6(5)	C23-B1-C31-C36	-32.9(5)
N2-Re1-N3-C13	160.8(4)	C39-B1-C31-C36	-151.7(3)
C1-Re1-N3-C12	172.2(3)	C47-B1-C31-C36	88.0(4)
N1-Re1-N3-C12	-91.8(3)	C36-C31-C32-C33	1.3(6)
N5-Re1-N3-C12	76.6(3)	B1-C31-C32-C33	172.5(4)
N4-Re1-N3-C12	45.6(8)	C31-C32-C33-C34	0.1(6)
N2-Re1-N3-C12	-14.0(3)	C31-C32-C33-C37	-179.0(4)
C1-Re1-N4-C19	106.4(19)	C32-C33-C34-C35	-1.2(6)
N3-Re1-N4-C19	-126.7(18)	C37-C33-C34-C35	177.9(4)
N1-Re1-N4-C19	12.3(19)	C33-C34-C35-C36	0.9(6)
N5-Re1-N4-C19	-158.4(19)	C33-C34-C35-C38	-178.5(4)
N2-Re1-N4-C19	-68.2(19)	C34-C35-C36-C31	0.6(6)
C1-Re1-N5-C21	-42(3)	C38-C35-C36-C31	180.0(4)
N3-Re1-N5-C21	54(3)	C32-C31-C36-C35	-1.6(6)
N1-Re1-N5-C21	-163(2)	B1-C31-C36-C35	-173.1(4)

N4-Re1-N5-C21	-133(3)	C34-C33-C37-F37A	172.4(5)
N2-Re1-N5-C21	135(3)	C32-C33-C37-F37A	-8.5(7)
C8-N1-C2-C7	66.8(5)	C34-C33-C37-F37C	45.6(6)
Re1-N1-C2-C7	-106.6(4)	C32-C33-C37-F37C	-135.2(5)
C8-N1-C2-C3	-117.0(4)	C34-C33-C37-F37B	-67.3(6)
Re1-N1-C2-C3	69.6(5)	С32-С33-С37-F37В	111.9(5)
C7-C2-C3-F3	-179.8(4)	C34-C35-C38-F38C	-176.9(5)
N1-C2-C3-F3	3.7(6)	C36-C35-C38-F38C	3.7(7)
C7-C2-C3-C4	2.0(6)	C34-C35-C38-F38A	-50.8(6)
N1-C2-C3-C4	-174.4(4)	C36-C35-C38-F38A	129.8(4)
F3-C3-C4-F4	0.7(7)	C34-C35-C38-F38B	63.2(6)
C2-C3-C4-F4	178 9(4)	C36-C35-C38-F38B	-1162(5)
F3-C3-C4-C5	-179 2(4)	C23-B1-C39-C44	74 9(4)
C2-C3-C4-C5	-1 1(7)	C31-B1-C39-C44	-160 6(3)
F4-C4-C5-F5	-1 5(6)	C47-B1-C39-C44	-453(5)
C3-C4-C5-F5	178 4(4)	$C^{23}-B1-C^{39}-C^{40}$	-974(4)
F4-C4-C5-C6	180 0(4)	$C_{31}-B_{1}-C_{39}-C_{40}$	27 1(5)
C3-C4-C5-C6	-0.1(7)	C47-B1-C39-C40	142 4(4)
F5-C5-C6-F6	-0.2(6)	C44-C39-C40-C41	1+2.+(+) 1 1(6)
C4-C5-C6-F6	178 4(4)	B1-C39-C40-C41	1737(4)
F5-C5-C6-C7	-1784(3)	$C_{39}C_{40}C_{41}C_{42}$	-22(6)
$C_{4}C_{5}C_{6}C_{7}$	0.2(6)	$C_{39}C_{40}C_{41}C_{42}$	177 2(4)
C3-C2-C7-F7	-1790(4)	C40-C41-C42-C43	0.7(6)
N1-C2-C7-F7	-2 6(6)	C45-C41-C42-C43	-1787(4)
$C_{3}-C_{2}-C_{7}-C_{6}$	-1.9(6)	C41-C42-C43-C44	19(6)
N1-C2-C7-C6	174 5(4)	C41-C42-C43-C46	-1785(4)
F6-C6-C7-F7	-0.2(5)	$C_{42} = C_{43} = C_{44} = C_{39}$	-3.1(6)
$C_{5-C_{6-C_{7-E_{7}}}}$	1780(3)	$C_{42} = C_{43} = C_{44} = C_{39}$	177 3(4)
F6-C6-C7-C2	-177 3(4)	C40-C39-C44-C43	1 5(6)
$C_{5} C_{6} C_{7} C_{2}$	-177.3(4)	B1 C30 C44 C43	1.3(0) 171 $A(A)$
$C_{2}-N_{1}-C_{2}-C_{2}$	-1523(4)	$C_{42} = C_{41} = C_{45} = C_{45}$	-171.4(4) -170.6(1)
$R_{e1} N_{1} C_{e2} C_{9}$	21 5(5)	C42-C41-C45-F45A	10(6)
$C_{10} N_{12} C_{10} $	166 1(4)	C_{40} - C_{41} - C_{45} - F_{45} A	1.0(0) 58 Q(5)
C11 N2 C9 C8	73.6(4)	C42-C41-C45-F45C	1205(4)
$P_{a1} N_{2} C_{0} C_{8}$	-73.0(4)	C40-C41-C45-F45C	-120.3(4)
N1 C8 C9 N2	40.0(4)	C42-C41-C45-F45B	-39.4(3) 121 2(4)
$C_{10} N_{12} C_{11} C_{12}$	-41.0(3)	C40-C41-C45-F45B	121.2(4) 10.8(5)
$C_{10} = N_2 - C_{11} - C_{12}$	-50.5(4)	C42-C43-C40-F40B	19.0(3)
$P_{01} N_{2} C_{11} C_{12}$	150.5(4) 27 1(4)	C44-C43-C40-F40D	-100.0(4) 140 5(4)
$C_{12} N_2 C_{12} C_{11}$	37.1(4) 126 5(4)	C42-C43-C40-F40A	140.3(4)
C13-IN3-C12-C11	-130.3(4)	C44-C43-C40-F40A	-39.9(3)
N2 C11 C12 N2	39.1(3) 40.0(5)	C42-C43-C40-F40C	-99.0(3)
N_2 -C11-C12-N3	-49.0(3)	C_{44} - C_{43} - C_{40} - F_{40} C	1520(2)
C12-IN3-C13-C14	-115.9(5)	C23-B1-C47-C48	-152.9(5)
C12 N2 C12 C19	(5, 2(5))	C39-BI-C47-C48	-3/.9(3)
$\bigcup_{i \neq j} \bigcup_{i \neq j} \bigcup_{i$	0.0(3)	$C_{22} D_1 C_{47} C_{52}$	04.9(4) 24.4(5)
$\mathbf{C}_{12} \mathbf{C}_{12} \mathbf{C}_{14} \mathbf{E}_{14} \mathbf{E}_{14}$	-109.2(4)	C_{20} D1- C_{47} C52	34.4(3)
U13-U13-U14-F14	-180.0(4)	C_{3} D_{1} C_{4} C_{5} C_{2} D_{1} C_{4} C_{5} C_{5}	149.4(3)
N3-U13-U14-F14	1./(0)	C51-B1-C4/-C52	-8/.8(4)
U18-U13-U14-U15	1.1(6)	C52-C4/-C48-C49	0.7(3)
N3-C13-C14-C15	-1//.3(4)	B1-C47-C48-C49	-172.4(3)

F14-C14-C15-F15	1.8(7)	C47-C48-C49-C50	-0.1(6)
C13-C14-C15-F15	-179.2(4)	C47-C48-C49-C53	179.3(4)
F14-C14-C15-C16	179.7(4)	C48-C49-C50-C51	-0.7(5)
C13-C14-C15-C16	-1.3(7)	C53-C49-C50-C51	179.9(4)
F15-C15-C16-F16	-1.7(7)	C49-C50-C51-C52	0.8(6)
C14-C15-C16-F16	-179.6(4)	C49-C50-C51-C54	-175.4(3)
F15-C15-C16-C17	178.7(4)	C50-C51-C52-C47	-0.3(6)
C14-C15-C16-C17	0.9(7)	C54-C51-C52-C47	175.9(3)
F16-C16-C17-F17	0.4(7)	C48-C47-C52-C51	-0.5(5)
C15-C16-C17-F17	179.9(4)	B1-C47-C52-C51	172.6(3)
F16-C16-C17-C18	-179.8(4)	C48-C49-C53-F53A	-116.7(4)
C15-C16-C17-C18	-0.3(7)	C50-C49-C53-F53A	62.7(5)
C14-C13-C18-F18	-179.5(4)	C48-C49-C53-F53B	5.6(5)
N3-C13-C18-F18	-1.1(6)	C50-C49-C53-F53B	-174.9(3)
C14-C13-C18-C17	-0.4(6)	C48-C49-C53-F53C	125.0(4)
N3-C13-C18-C17	178.0(4)	C50-C49-C53-F53C	-55.5(5)
F17-C17-C18-F18	-1.0(6)	C50-C51-C54-F54C	-148.1(4)
C16-C17-C18-F18	179.1(4)	C52-C51-C54-F54C	35.7(5)
F17-C17-C18-C13	179.9(4)	C50-C51-C54-F54B	-26.0(5)
C16-C17-C18-C13	0.0(7)	C52-C51-C54-F54B	157.8(3)
Re1-N4-C19-C20	-73(15)	C50-C51-C54-F54A	92.2(5)
Re1-N5-C21-C22	175(2)	C52-C51-C54-F54A	-84.0(4)

An orange-brown rod-like specimen of $C_{29}H_{40.50}BF_4N_{5.50}ORe$, approximate dimensions 0.043 mm x 0.089 mm x 0.268 mm, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured.

The total exposure time was 10.10 hours. The frames were integrated with the Bruker SAINT⁸ software package using a narrow-frame algorithm. The integration of the data using a monoclinic unit cell yielded a total of 96744 reflections to a maximum θ angle of 30.52° (0.70 Å resolution), of which 19226 were independent (average redundancy 5.032, completeness = 99.9%, R_{int} = 5.17%, R_{sig} = 4.26%) and 15346 (79.82%) were greater than $2\sigma(F^2)$. The final cell constants of a = 22.3852(5) Å, b = 14.7691(3) Å, c = 19.6678(5) Å, $\beta = 104.1230(10)^\circ$, volume = 6305.8(3) Å^3, are based upon the refinement of the XYZ-centroids of 1239 reflections above 20 $\sigma(I)$ with 4.187° < $2\theta < 62.04^\circ$. Data were corrected for absorption effects using the numerical method (SADABS⁹). The ratio of minimum to maximum apparent transmission was 0.554. The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.4210 and 0.8500.

The final anisotropic full-matrix least-squares refinement on F^2 with 812 variables converged at R1 = 2.70%, for the observed data and wR2 = 5.42% for all data. The goodness-of-fit was 1.009. The largest peak in the final difference electron density synthesis was 1.713 e⁻/Å³ and the largest hole was -1.037 e⁻/Å³ with an RMS deviation of 0.127 e⁻/Å³. On the basis of the final model, the calculated density was 1.591 g/cm³ and F(000), 3016 e⁻.

⁸ Bruker-Nonius, SAINT version 2009.9, **2009**, Bruker-Nonius, Madison, WI 53711, USA

⁹ Bruker-Nonius, SADABS version 2009.9, **2009**, Bruker-Nonius, Madison, WI 53711, USA

Figure S6. ORTEP drawing of **4b** showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S7. ORTEP drawing of **4b**. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S8. Stereoscopic ORTEP drawing of **3a**. Ellipsoids are at the 50% probability level and hydrogen atoms were omitted for clarity.

Figure S9. ORTEP drawing of **4b counterion** (BF₄) showing naming and numbering scheme. Ellipsoids are at the 50% probability level.

Figure S10. ORTEP drawing of **4b** solvent showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with arbitrary radii for clarity.

Table S8. Summary of Crystal Data for 4b

Chemical formula	$C_{29}H_{40.50}BF_4N_{5.50}ORe$
Formula weight (g/mol)	755.18
Temperature (K)	100(2)
Wavelength (\mathring{A})	0.71073
Crystal size (<i>mm</i>)	0.043 x 0.089 x 0.268
Crystal habit	orange-brown rod
Crystal system	monoclinic
Space group	P 1 21/c 1
<i>a</i> , Å	22.3852(5)
b, Å	14.7691(3)
<i>c</i> , Å	19.6678(5)
α, °	90
β, °	104.1230(10)
γ, °	90
Volume, Å ³	6305.8(3)
Z	8
Density (calculated), g/cm ³	1.591
Absorption coefficient, mm ⁻¹	3.909
F(000)	3016
Theta range for data collection	1.85 to 30.52°
Index ranges	-26<=h<=31, -21<=k<=21, -28<=l<=28
Reflections collected	96744
Independent reflections	19226 [R(int) = 0.0517]
Coverage of independent reflection	s 99.9%
Absorption correction	numerical
Max. and min. transmission	0.8500 and 0.4210
Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL-2013 (Sheldrick, 2013)
Function minimized	$\Sigma w(Fo2 - Fc2)2$
Data / restraints / parameters	19226 / 70 / 812
Goodness-of-fit on F2	1.009
$\Delta/\sigma max$	0.003
Final R indices	15346 data; I> 2σ (I) R1 = 0.0270, wR2 = 0.0495
	all data $R1 = 0.0450, wR2 = 0.0542$
Weighting scheme	w=1/[$\sigma^{2}(F_{o}^{2})$ +(0.0210P) ² +2.3269P] where P=(F_{o}^{2} +2 F_{c}^{2})/3
Largest diff. peak and hole, eÅ ⁻³	1.713 and -1.037
R.M.S. deviation from mean, eÅ ⁻³	0.127

	Х	У	Ζ	U(eq)
Re1	0.28477(2)	0.30308(2)	0.44508(2)	0.01078(2)
01	0.21319(9)	0.47352(12)	0.39162(10)	0.0187(4)
N1	0.23586(10)	0.27994(13)	0.51176(11)	0.0135(4)
N2	0.32599(10)	0.16980(14)	0.48699(11)	0.0146(4)
N3	0.25238(9)	0.23050(13)	0.36192(11)	0.0118(4)
N4	0.34786(10)	0.37659(14)	0.52530(12)	0.0161(5)
N5	0.36482(10)	0.32421(14)	0.40477(11)	0.0153(4)
C1	0.24160(13)	0.19013(17)	0.54578(15)	0.0190(6)
C2	0.30613(13)	0.15422(18)	0.55280(14)	0.0203(6)
C3	0.29757(12)	0.10101(17)	0.43259(14)	0.0176(5)
C4	0.28560(12)	0.14346(16)	0.36042(14)	0.0160(5)
C5	0.39419(12)	0.16123(18)	0.50237(16)	0.0221(6)
C6	0.19501(12)	0.34041(16)	0.53598(13)	0.0140(5)
C7	0.13591(12)	0.35775(17)	0.49397(14)	0.0171(5)
C8	0.09723(12)	0.41604(18)	0.51906(15)	0.0199(6)
С9	0.11501(13)	0.45662(17)	0.58460(15)	0.0194(6)
C10	0.17328(13)	0.43808(17)	0.62522(14)	0.0187(6)
C11	0.21385(12)	0.38032(16)	0.60280(14)	0.0161(5)
C12	0.11155(14)	0.3127(2)	0.42373(15)	0.0267(7)
C13	0.07125(14)	0.5169(2)	0.61132(17)	0.0285(7)
C14	0.27499(13)	0.36055(18)	0.65295(14)	0.0201(6)
C15	0.20501(11)	0.24741(16)	0.29934(13)	0.0120(5)
C16	0.21128(12)	0.31528(16)	0.25146(13)	0.0139(5)
C17	0.16331(12)	0.32961(17)	0.19235(14)	0.0169(5)
C18	0.11047(12)	0.27665(18)	0.17723(14)	0.0183(5)
C19	0.10599(12)	0.20885(17)	0.22433(14)	0.0176(5)
C20	0.15144(12)	0.19333(17)	0.28510(14)	0.0154(5)
C21	0.26920(12)	0.36924(17)	0.25795(14)	0.0171(5)
C22	0.06104(14)	0.2915(2)	0.11064(15)	0.0259(6)
C23	0.14192(12)	0.11858(17)	0.33388(15)	0.0200(6)
C24	0.24206(12)	0.40880(16)	0.41174(13)	0.0136(5)
C25	0.38466(12)	0.41042(17)	0.56764(15)	0.0181(5)
C26	0.43039(13)	0.4524(2)	0.62402(15)	0.0252(6)
C27	0.41128(12)	0.33091(17)	0.39092(14)	0.0163(5)
C28	0.47120(12)	0.3360(2)	0.37465(15)	0.0228(6)
Re2	0.25015(2)	0.82822(2)	0.55452(2)	0.01163(3)
O2	0.17444(9)	0.99150(12)	0.49104(10)	0.0207(4)
N6	0.19850(10)	0.80079(14)	0.61762(11)	0.0144(4)

	Х	У	Z	U(eq)
N7	0.29571(10)	0.69904(14)	0.60099(12)	0.0171(5)
N8	0.22383(10)	0.75066(13)	0.47305(11)	0.0137(4)
N9	0.30772(10)	0.90912(14)	0.63619(12)	0.0164(5)
N10	0.33156(10)	0.85702(14)	0.51726(11)	0.0159(4)
C29	0.20653(13)	0.71156(17)	0.65225(14)	0.0194(6)
C30	0.27334(14)	0.68291(18)	0.66522(15)	0.0218(6)
C31	0.27278(13)	0.62623(16)	0.54742(14)	0.0181(6)
C32	0.26087(12)	0.66693(16)	0.47487(14)	0.0167(5)
C33	0.36412(13)	0.69906(18)	0.62003(16)	0.0234(6)
C34	0.15402(12)	0.85751(16)	0.63949(14)	0.0150(5)
C35	0.09670(12)	0.87666(17)	0.59395(15)	0.0177(5)
C36	0.05521(13)	0.93173(18)	0.61744(15)	0.0215(6)
C37	0.06854(14)	0.96672(18)	0.68486(16)	0.0239(6)
C38	0.12527(14)	0.94709(17)	0.72887(15)	0.0215(6)
C39	0.16846(13)	0.89238(17)	0.70814(14)	0.0180(6)
C40	0.07588(13)	0.83581(19)	0.52159(15)	0.0218(6)
C41	0.02245(15)	0.0241(2)	0.71059(18)	0.0341(8)
C42	0.22763(14)	0.87180(18)	0.76129(14)	0.0230(6)
C43	0.17675(12)	0.76118(16)	0.40942(13)	0.0127(5)
C44	0.18209(12)	0.82461(16)	0.35812(13)	0.0137(5)
C45	0.13460(12)	0.83221(17)	0.29767(14)	0.0153(5)
C46	0.08315(12)	0.77569(17)	0.28441(14)	0.0156(5)
C47	0.07997(12)	0.71223(16)	0.33514(14)	0.0158(5)
C48	0.12494(12)	0.70412(16)	0.39756(13)	0.0142(5)
C49	0.23966(12)	0.87958(18)	0.36369(15)	0.0196(6)
C50	0.03508(12)	0.78044(18)	0.21635(14)	0.0206(6)
C51	0.11728(12)	0.63238(17)	0.44948(14)	0.0187(6)
C52	0.20430(12)	0.92934(16)	0.51560(13)	0.0136(5)
C53	0.34151(12)	0.94623(17)	0.67942(14)	0.0167(5)
C54	0.38466(13)	0.9924(2)	0.73641(16)	0.0261(7)
C55	0.37599(13)	0.86755(18)	0.49972(14)	0.0186(6)
C56	0.43206(13)	0.8804(2)	0.47600(17)	0.0289(7)
B1	0.57354(15)	0.3820(2)	0.56462(18)	0.0242(7)
F1	0.51638(8)	0.33748(11)	0.54600(9)	0.0303(4)
F2	0.59178(8)	0.40477(13)	0.50422(9)	0.0338(4)
F3	0.56807(9)	0.45946(14)	0.60201(10)	0.0442(5)
F4	0.61635(9)	0.32377(15)	0.60514(12)	0.0548(6)
B2	0.4894(5)	0.4521(7)	0.8414(4)	0.022(2)
F5	0.4687(5)	0.4933(9)	0.7781(4)	0.044(2)
F6	0.4456(5)	0.4342(8)	0.8763(6)	0.055(2)

	Х	У	Z	U(eq)
F7	0.5327(6)	0.5088(8)	0.8833(5)	0.052(2)
F8	0.5202(6)	0.3724(7)	0.8347(9)	0.054(2)
B2A	0.4791(11)	0.4526(11)	0.8347(10)	0.053(4)
F5A	0.4567(12)	0.5095(13)	0.7804(8)	0.082(5)
F6A	0.4346(10)	0.4230(15)	0.8643(11)	0.101(5)
F7A	0.5218(12)	0.4988(13)	0.8852(9)	0.083(5)
F8A	0.5073(10)	0.3791(10)	0.8110(14)	0.061(4)
N1S	0.58829(15)	0.7231(2)	0.79656(16)	0.0454(8)
C1S	0.53885(18)	0.7248(2)	0.79960(17)	0.0356(8)
C2S	0.47436(17)	0.7259(3)	0.80277(19)	0.0455(9)

Table S10. Bond Angles for 6

Re1-C24	1.864(3)	Re1-N1	1.933(2)
Re1-N3	1.942(2)	Re1-N4	2.139(2)
Re1-N5	2.152(2)	Re1-N2	2.244(2)
O1-C24	1.168(3)	N1-C6	1.440(3)
N1-C1	1.477(3)	N2-C2	1.485(3)
N2-C5	1.488(3)	N2-C3	1.500(3)
N3-C15	1.437(3)	N3-C4	1.489(3)
N4-C25	1.134(3)	N5-C27	1.142(3)
C1-C2	1.513(4)	C1-H1A	0.99
C1-H1B	0.99	C2-H2A	0.99
C2-H2B	0.99	C3-C4	1.515(4)
СЗ-НЗА	0.99	С3-Н3В	0.99
C4-H4A	0.99	C4-H4B	0.99
С5-Н5А	0.98	С5-Н5В	0.98
C5-H5C	0.98	C6-C7	1.402(4)
C6-C11	1.408(4)	C7-C8	1.394(4)
C7-C12	1.510(4)	C8-C9	1.389(4)
С8-Н8	0.95	C9-C10	1.381(4)
C9-C13	1.509(4)	C10-C11	1.394(4)
C10-H10	0.95	C11-C14	1.508(4)
C12-H12A	0.98	C12-H12B	0.98
C12-H12C	0.98	C13-H13A	0.98
C13-H13B	0.98	C13-H13C	0.98
C14-H14A	0.98	C14-H14B	0.98
C14-H14C	0.98	C15-C16	1.405(3)
C15-C20	1.411(3)	C16-C17	1.393(4)
C16-C21	1.501(3)	C17-C18	1.388(4)
C17-H17	0.95	C18-C19	1.384(4)
C18-C22	1.510(4)	C19-C20	1.387(4)
C19-H19	0.95	C20-C23	1.511(4)
C21-H21A	0.98	C21-H21B	0.98
C21-H21C	0.98	C22-H22A	0.98
C22-H22B	0.98	C22-H22C	0.98
С23-Н23А	0.98	С23-Н23В	0.98
С23-Н23С	0.98	C25-C26	1.452(4)
C26-H26A	0.98	C26-H26B	0.98
C26-H26C	0.98	C27-C28	1.455(4)
C28-H28A	0.98	C28-H28B	0.98
C28-H28C	0.98	Re2-C52	1.867(3)
Re2-N6	1.934(2)	Re2-N8	1.940(2)
----------	----------	----------	----------
Re2-N9	2.158(2)	Re2-N10	2.166(2)
Re2-N7	2.250(2)	O2-C52	1.168(3)
N6-C34	1.445(3)	N6-C29	1.474(3)
N7-C33	1.485(3)	N7-C30	1.487(4)
N7-C31	1.505(3)	N8-C43	1.434(3)
N8-C32	1.484(3)	N9-C53	1.132(3)
N10-C55	1.140(3)	C29-C30	1.515(4)
С29-Н29А	0.99	C29-H29B	0.99
C30-H30A	0.99	C30-H30B	0.99
C31-C32	1.511(4)	C31-H31A	0.99
C31-H31B	0.99	C32-H32A	0.99
С32-Н32В	0.99	С33-Н33А	0.98
С33-Н33В	0.98	С33-Н33С	0.98
C34-C35	1.403(4)	C34-C39	1.407(4)
C35-C36	1.395(4)	C35-C40	1.511(4)
C36-C37	1.386(4)	С36-Н36	0.95
C37-C38	1.382(4)	C37-C41	1.515(4)
C38-C39	1.395(4)	C38-H38	0.95
C39-C42	1.505(4)	C40-H40A	0.98
C40-H40B	0.98	C40-H40C	0.98
C41-H41A	0.98	C41-H41B	0.98
C41-H41C	0.98	C42-H42A	0.98
C42-H42B	0.98	C42-H42C	0.98
C43-C44	1.403(3)	C43-C48	1.406(3)
C44-C45	1.393(4)	C44-C49	1.504(3)
C45-C46	1.395(4)	C45-H45	0.95
C46-C47	1.383(4)	C46-C50	1.501(4)
C47-C48	1.390(4)	C47-H47	0.95
C48-C51	1.510(3)	C49-H49A	0.98
C49-H49B	0.98	C49-H49C	0.98
C50-H50A	0.98	C50-H50B	0.98
С50-Н50С	0.98	C51-H51A	0.98
C51-H51B	0.98	C51-H51C	0.98
C53-C54	1.458(4)	C54-H54A	0.98
C54-H54B	0.98	С54-Н54С	0.98
C55-C56	1.454(4)	С56-Н56А	0.98
С56-Н56В	0.98	С56-Н56С	0.98
B1-F3	1.381(4)	B1-F4	1.386(4)
B1-F2	1.388(4)	B1-F1	1.406(4)
B2-F6	1.354(7)	B2-F5	1.361(7)

B2-F8	1.386(8)	B2-F7	1.388(8)
B2A-F6A	1.344(13)	B2A-F5A	1.355(13)
B2A-F7A	1.380(12)	B2A-F8A	1.391(13)
N1S-C1S	1.123(5)	C1S-C2S	1.460(5)
C2S-H2SA	0.98	C2S-H2SB	0.98
C2S-H2SC	0.98		

Table S11. Bond Angles for 4b

C24-Re1-N1	93.44(10)	C24-Re1-N3	96.43(9)
N1-Re1-N3	108.48(9)	C24-Re1-N4	91.38(9)
N1-Re1-N4	88.32(9)	N3-Re1-N4	160.92(8)
C24-Re1-N5	98.66(9)	N1-Re1-N5	159.41(9)
N3-Re1-N5	86.74(8)	N4-Re1-N5	74.86(8)
C24-Re1-N2	173.48(9)	N1-Re1-N2	81.13(8)
N3-Re1-N2	81.99(8)	N4-Re1-N2	92.06(8)
N5-Re1-N2	87.58(8)	C6-N1-C1	113.5(2)
C6-N1-Re1	128.71(16)	C1-N1-Re1	117.71(16)
C2-N2-C5	108.7(2)	C2-N2-C3	110.6(2)
C5-N2-C3	108.8(2)	C2-N2-Re1	105.80(15)
C5-N2-Re1	117.32(16)	C3-N2-Re1	105.51(14)
C15-N3-C4	113.63(19)	C15-N3-Re1	132.17(16)
C4-N3-Re1	114.05(15)	C25-N4-Re1	174.6(2)
C27-N5-Re1	171.6(2)	N1-C1-C2	109.4(2)
N1-C1-H1A	109.8	С2-С1-Н1А	109.8
N1-C1-H1B	109.8	С2-С1-Н1В	109.8
H1A-C1-H1B	108.2	N2-C2-C1	110.4(2)
N2-C2-H2A	109.6	С1-С2-Н2А	109.6
N2-C2-H2B	109.6	С1-С2-Н2В	109.6
Н2А-С2-Н2В	108.1	N2-C3-C4	109.6(2)
N2-C3-H3A	109.8	С4-С3-НЗА	109.8
N2-C3-H3B	109.8	С4-С3-Н3В	109.8
НЗА-СЗ-НЗВ	108.2	N3-C4-C3	108.3(2)
N3-C4-H4A	110.0	С3-С4-Н4А	110.0
N3-C4-H4B	110.0	С3-С4-Н4В	110.0
Н4А-С4-Н4В	108.4	N2-C5-H5A	109.5
N2-C5-H5B	109.5	H5A-C5-H5B	109.5
N2-C5-H5C	109.5	Н5А-С5-Н5С	109.5
H5B-C5-H5C	109.5	C7-C6-C11	119.9(2)
C7-C6-N1	120.2(2)	C11-C6-N1	119.9(2)
C8-C7-C6	118.9(2)	C8-C7-C12	118.6(2)
C6-C7-C12	122.5(2)	C9-C8-C7	122.2(3)
С9-С8-Н8	118.9	С7-С8-Н8	118.9
C10-C9-C8	117.9(2)	C10-C9-C13	121.1(3)
C8-C9-C13	120.9(3)	C9-C10-C11	122.3(3)
С9-С10-Н10	118.8	С11-С10-Н10	118.8
C10-C11-C6	118.8(2)	C10-C11-C14	118.0(2)
C6-C11-C14	123.2(2)	C7-C12-H12A	109.5

C7-C12-H12B	109.5	H12A-C12-H12B	109.5
С7-С12-Н12С	109.5	H12A-C12-H12C	109.5
H12B-C12-H12C	109.5	С9-С13-Н13А	109.5
С9-С13-Н13В	109.5	H13A-C13-H13B	109.5
С9-С13-Н13С	109.5	Н13А-С13-Н13С	109.5
Н13В-С13-Н13С	109.5	C11-C14-H14A	109.5
C11-C14-H14B	109.5	H14A-C14-H14B	109.5
С11-С14-Н14С	109.5	H14A-C14-H14C	109.5
H14B-C14-H14C	109.5	C16-C15-C20	119.3(2)
C16-C15-N3	121.6(2)	C20-C15-N3	119.0(2)
C17-C16-C15	119.0(2)	C17-C16-C21	117.7(2)
C15-C16-C21	123.2(2)	C18-C17-C16	122.4(2)
С18-С17-Н17	118.8	С16-С17-Н17	118.8
C19-C18-C17	117.5(2)	C19-C18-C22	121.9(3)
C17-C18-C22	120.6(3)	C18-C19-C20	122.6(2)
С18-С19-Н19	118.7	С20-С19-Н19	118.7
C19-C20-C15	119.1(2)	C19-C20-C23	118.7(2)
C15-C20-C23	122.2(2)	C16-C21-H21A	109.5
C16-C21-H21B	109.5	H21A-C21-H21B	109.5
С16-С21-Н21С	109.5	H21A-C21-H21C	109.5
H21B-C21-H21C	109.5	C18-C22-H22A	109.5
C18-C22-H22B	109.5	H22A-C22-H22B	109.5
С18-С22-Н22С	109.5	H22A-C22-H22C	109.5
H22B-C22-H22C	109.5	С20-С23-Н23А	109.5
С20-С23-Н23В	109.5	H23A-C23-H23B	109.5
С20-С23-Н23С	109.5	H23A-C23-H23C	109.5
H23B-C23-H23C	109.5	O1-C24-Re1	177.2(2)
N4-C25-C26	177.6(3)	С25-С26-Н26А	109.5
С25-С26-Н26В	109.5	H26A-C26-H26B	109.5
С25-С26-Н26С	109.5	H26A-C26-H26C	109.5
H26B-C26-H26C	109.5	N5-C27-C28	177.7(3)
С27-С28-Н28А	109.5	C27-C28-H28B	109.5
H28A-C28-H28B	109.5	С27-С28-Н28С	109.5
H28A-C28-H28C	109.5	H28B-C28-H28C	109.5
C52-Re2-N6	94.34(10)	C52-Re2-N8	96.19(10)
N6-Re2-N8	107.31(9)	C52-Re2-N9	91.78(9)
N6-Re2-N9	88.87(8)	N8-Re2-N9	161.28(9)
C52-Re2-N10	97.35(9)	N6-Re2-N10	160.43(9)
N8-Re2-N10	87.00(8)	N9-Re2-N10	75.18(8)
C52-Re2-N7	173.86(9)	N6-Re2-N7	81.05(8)
N8-Re2-N7	81.43(8)	N9-Re2-N7	92.17(8)

N10-Re2-N7	88.20(8)	C34-N6-C29	113.3(2)
C34-N6-Re2	129.26(16)	C29-N6-Re2	117.33(17)
C33-N7-C30	109.0(2)	C33-N7-C31	109.3(2)
C30-N7-C31	110.6(2)	C33-N7-Re2	116.08(16)
C30-N7-Re2	105.53(15)	C31-N7-Re2	106.15(15)
C43-N8-C32	113.48(19)	C43-N8-Re2	131.83(16)
C32-N8-Re2	114.62(16)	C53-N9-Re2	174.4(2)
C55-N10-Re2	175.8(2)	N6-C29-C30	109.4(2)
N6-C29-H29A	109.8	С30-С29-Н29А	109.8
N6-C29-H29B	109.8	С30-С29-Н29В	109.8
H29A-C29-H29B	108.2	N7-C30-C29	109.6(2)
N7-C30-H30A	109.8	С29-С30-Н30А	109.8
N7-C30-H30B	109.8	С29-С30-Н30В	109.8
H30A-C30-H30B	108.2	N7-C31-C32	109.2(2)
N7-C31-H31A	109.8	C32-C31-H31A	109.8
N7-C31-H31B	109.8	С32-С31-Н31В	109.8
H31A-C31-H31B	108.3	N8-C32-C31	108.8(2)
N8-C32-H32A	109.9	С31-С32-Н32А	109.9
N8-C32-H32B	109.9	С31-С32-Н32В	109.9
H32A-C32-H32B	108.3	N7-C33-H33A	109.5
N7-C33-H33B	109.5	Н33А-С33-Н33В	109.5
N7-C33-H33C	109.5	H33A-C33-H33C	109.5
H33B-C33-H33C	109.5	C35-C34-C39	119.9(2)
C35-C34-N6	121.1(2)	C39-C34-N6	119.0(2)
C36-C35-C34	119.0(3)	C36-C35-C40	117.9(3)
C34-C35-C40	123.0(2)	C37-C36-C35	121.9(3)
С37-С36-Н36	119.0	С35-С36-Н36	119.0
C38-C37-C36	118.1(3)	C38-C37-C41	120.3(3)
C36-C37-C41	121.5(3)	C37-C38-C39	122.3(3)
С37-С38-Н38	118.8	С39-С38-Н38	118.8
C38-C39-C34	118.6(3)	C38-C39-C42	118.0(2)
C34-C39-C42	123.4(2)	С35-С40-Н40А	109.5
С35-С40-Н40В	109.5	H40A-C40-H40B	109.5
С35-С40-Н40С	109.5	H40A-C40-H40C	109.5
H40B-C40-H40C	109.5	С37-С41-Н41А	109.5
С37-С41-Н41В	109.5	H41A-C41-H41B	109.5
С37-С41-Н41С	109.5	H41A-C41-H41C	109.5
H41B-C41-H41C	109.5	С39-С42-Н42А	109.5
С39-С42-Н42В	109.5	H42A-C42-H42B	109.5
С39-С42-Н42С	109.5	H42A-C42-H42C	109.5
H42B-C42-H42C	109.5	C44-C43-C48	119.5(2)

C44-C43-N8	121.8(2)	C48-C43-N8	118.7(2)
C45-C44-C43	119.1(2)	C45-C44-C49	118.7(2)
C43-C44-C49	122.0(2)	C44-C45-C46	122.3(2)
С44-С45-Н45	118.8	C46-C45-H45	118.8
C47-C46-C45	117.1(2)	C47-C46-C50	121.5(2)
C45-C46-C50	121.2(2)	C46-C47-C48	122.8(2)
С46-С47-Н47	118.6	C48-C47-H47	118.6
C47-C48-C43	119.0(2)	C47-C48-C51	118.7(2)
C43-C48-C51	122.2(2)	С44-С49-Н49А	109.5
С44-С49-Н49В	109.5	H49A-C49-H49B	109.5
С44-С49-Н49С	109.5	H49A-C49-H49C	109.5
H49B-C49-H49C	109.5	C46-C50-H50A	109.5
C46-C50-H50B	109.5	H50A-C50-H50B	109.5
С46-С50-Н50С	109.5	H50A-C50-H50C	109.5
H50B-C50-H50C	109.5	C48-C51-H51A	109.5
C48-C51-H51B	109.5	H51A-C51-H51B	109.5
C48-C51-H51C	109.5	H51A-C51-H51C	109.5
H51B-C51-H51C	109.5	O2-C52-Re2	178.5(2)
N9-C53-C54	178.5(3)	С53-С54-Н54А	109.5
С53-С54-Н54В	109.5	H54A-C54-H54B	109.5
С53-С54-Н54С	109.5	H54A-C54-H54C	109.5
H54B-C54-H54C	109.5	N10-C55-C56	178.9(3)
С55-С56-Н56А	109.5	С55-С56-Н56В	109.5
H56A-C56-H56B	109.5	С55-С56-Н56С	109.5
Н56А-С56-Н56С	109.5	H56B-C56-H56C	109.5
F3-B1-F4	110.3(3)	F3-B1-F2	109.8(3)
F4-B1-F2	109.6(3)	F3-B1-F1	109.5(3)
F4-B1-F1	108.5(3)	F2-B1-F1	109.2(3)
F6-B2-F5	115.1(7)	F6-B2-F8	108.7(7)
F5-B2-F8	111.0(7)	F6-B2-F7	107.7(7)
F5-B2-F7	107.8(7)	F8-B2-F7	106.1(7)
F6A-B2A-F5A	111.9(12)	F6A-B2A-F7A	107.8(11)
F5A-B2A-F7A	108.5(11)	F6A-B2A-F8A	109.7(11)
F5A-B2A-F8A	109.3(11)	F7A-B2A-F8A	109.5(11)
N1S-C1S-C2S	179.1(4)	C1S-C2S-H2SA	109.5
C1S-C2S-H2SB	109.5	H2SA-C2S-H2SB	109.5
C1S-C2S-H2SC	109.5	H2SA-C2S-H2SC	109.5

H2SB-C2S-H2SC 109.5

Table S12. Torsion Angles for 4b

C6-N1-C1-C2	-146.8(2)	Re1-N1-C1-C2	30.9(3)
C5-N2-C2-C1	162.4(2)	C3-N2-C2-C1	-78.2(3)
Re1-N2-C2-C1	35.6(2)	N1-C1-C2-N2	-43.8(3)
C2-N2-C3-C4	147.1(2)	C5-N2-C3-C4	-93.6(2)
Re1-N2-C3-C4	33.2(2)	C15-N3-C4-C3	-140.8(2)
Re1-N3-C4-C3	43.1(2)	N2-C3-C4-N3	-49.8(3)
C1-N1-C6-C7	-104.3(3)	Re1-N1-C6-C7	78.3(3)
C1-N1-C6-C11	74.0(3)	Re1-N1-C6-C11	-103.4(3)
C11-C6-C7-C8	1.2(4)	N1-C6-C7-C8	179.5(2)
C11-C6-C7-C12	-176.3(2)	N1-C6-C7-C12	2.0(4)
C6-C7-C8-C9	-0.8(4)	C12-C7-C8-C9	176.8(3)
C7-C8-C9-C10	0.4(4)	C7-C8-C9-C13	-177.8(3)
C8-C9-C10-C11	-0.4(4)	C13-C9-C10-C11	177.8(3)
C9-C10-C11-C6	0.8(4)	C9-C10-C11-C14	-176.6(2)
C7-C6-C11-C10	-1.2(4)	N1-C6-C11-C10	-179.5(2)
C7-C6-C11-C14	176.0(2)	N1-C6-C11-C14	-2.3(4)
C4-N3-C15-C16	-109.5(3)	Re1-N3-C15-C16	65.7(3)
C4-N3-C15-C20	69.3(3)	Re1-N3-C15-C20	-115.4(2)
C20-C15-C16-C17	2.4(4)	N3-C15-C16-C17	-178.8(2)
C20-C15-C16-C21	-173.1(2)	N3-C15-C16-C21	5.7(4)
C15-C16-C17-C18	-2.9(4)	C21-C16-C17-C18	172.8(2)
C16-C17-C18-C19	1.4(4)	C16-C17-C18-C22	-176.9(2)
C17-C18-C19-C20	0.7(4)	C22-C18-C19-C20	178.9(2)
C18-C19-C20-C15	-1.1(4)	C18-C19-C20-C23	179.0(2)
C16-C15-C20-C19	-0.4(4)	N3-C15-C20-C19	-179.3(2)
C16-C15-C20-C23	179.4(2)	N3-C15-C20-C23	0.6(4)
C34-N6-C29-C30	-144.4(2)	Re2-N6-C29-C30	32.6(3)
C33-N7-C30-C29	162.2(2)	C31-N7-C30-C29	-77.5(3)
Re2-N7-C30-C29	36.9(2)	N6-C29-C30-N7	-45.9(3)
C33-N7-C31-C32	-94.0(2)	C30-N7-C31-C32	145.9(2)
Re2-N7-C31-C32	31.9(2)	C43-N8-C32-C31	-139.6(2)
Re2-N8-C32-C31	43.2(2)	N7-C31-C32-N8	-48.6(3)
C29-N6-C34-C35	-109.3(3)	Re2-N6-C34-C35	74.1(3)
C29-N6-C34-C39	69.5(3)	Re2-N6-C34-C39	-107.1(3)
C39-C34-C35-C36	1.1(4)	N6-C34-C35-C36	179.9(2)
C39-C34-C35-C40	-175.0(2)	N6-C34-C35-C40	3.8(4)
C34-C35-C36-C37	-1.2(4)	C40-C35-C36-C37	175.2(2)
C35-C36-C37-C38	1.2(4)	C35-C36-C37-C41	-178.1(3)
C36-C37-C38-C39	-1.3(4)	C41-C37-C38-C39	178.1(2)

C37-C38-C39-C34	1.3(4)	C37-C38-C39-C42	-177.2(2)
C35-C34-C39-C38	-1.2(4)	N6-C34-C39-C38	180.0(2)
C35-C34-C39-C42	177.2(2)	N6-C34-C39-C42	-1.6(4)
C32-N8-C43-C44	-106.3(3)	Re2-N8-C43-C44	70.3(3)
C32-N8-C43-C48	71.6(3)	Re2-N8-C43-C48	-111.8(2)
C48-C43-C44-C45	2.6(4)	N8-C43-C44-C45	-179.5(2)
C48-C43-C44-C49	-172.5(2)	N8-C43-C44-C49	5.4(4)
C43-C44-C45-C46	-3.5(4)	C49-C44-C45-C46	171.8(2)
C44-C45-C46-C47	1.7(4)	C44-C45-C46-C50	-175.1(2)
C45-C46-C47-C48	0.8(4)	C50-C46-C47-C48	177.6(2)
C46-C47-C48-C43	-1.5(4)	C46-C47-C48-C51	-179.8(2)
C44-C43-C48-C47	-0.3(4)	N8-C43-C48-C47	-178.2(2)
C44-C43-C48-C51	178.0(2)	N8-C43-C48-C51	0.0(4)

Table S13. A	Anisotropic atomic	displacement	parameters	(\AA^2)	for 4	b
--------------	--------------------	--------------	------------	------------------	-------	---

	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Re1	0.01207(5)	0.00893(4)	0.01124(5)	0.00030(3)	0.00264(4)	-0.00084(3)
01	0.0236(10)	0.0131(9)	0.0193(10)	0.0014(7)	0.0050(8)	0.0049(7)
N1	0.0154(11)	0.0122(10)	0.0141(11)	0.0004(8)	0.0057(9)	-0.0026(8)
N2	0.0142(11)	0.0156(10)	0.0127(11)	0.0015(8)	0.0006(9)	0.0011(8)
N3	0.0143(10)	0.0104(10)	0.0106(10)	-0.0009(8)	0.0026(8)	-0.0008(8)
N4	0.0178(11)	0.0140(11)	0.0169(12)	-0.0006(8)	0.0051(10)	-0.0011(8)
N5	0.0170(11)	0.0139(10)	0.0138(11)	-0.0010(8)	0.0014(9)	-0.0004(8)
C1	0.0274(15)	0.0129(12)	0.0195(14)	0.0047(10)	0.0111(12)	-0.0014(10)
C2	0.0288(15)	0.0151(13)	0.0163(14)	0.0038(10)	0.0043(12)	0.0028(10)
C3	0.0206(14)	0.0110(12)	0.0199(14)	-0.0011(10)	0.0024(11)	0.0017(9)
C4	0.0185(13)	0.0119(12)	0.0169(13)	-0.0023(10)	0.0027(11)	0.0024(9)
C5	0.0181(14)	0.0182(14)	0.0269(16)	0.0021(11)	-0.0006(12)	0.0058(10)
C6	0.0183(13)	0.0104(12)	0.0147(13)	0.0021(9)	0.0071(10)	-0.0033(9)
C7	0.0198(14)	0.0151(12)	0.0174(14)	-0.0006(10)	0.0068(11)	-0.0035(10)
C8	0.0154(13)	0.0193(14)	0.0258(16)	0.0022(11)	0.0065(12)	-0.0002(10)
C9	0.0244(15)	0.0137(13)	0.0233(15)	0.0001(10)	0.0117(12)	-0.0006(10)
C10	0.0233(14)	0.0163(13)	0.0183(14)	-0.0026(10)	0.0089(12)	-0.0039(10)
C11	0.0222(14)	0.0127(12)	0.0149(13)	0.0017(10)	0.0077(11)	-0.0034(10)
C12	0.0203(15)	0.0358(17)	0.0216(16)	-0.0082(12)	0.0006(12)	0.0003(12)
C13	0.0294(17)	0.0292(16)	0.0302(18)	-0.0074(13)	0.0137(14)	0.0039(12)
C14	0.0267(15)	0.0195(14)	0.0135(13)	0.0010(10)	0.0035(12)	0.0003(11)
C15	0.0109(12)	0.0132(12)	0.0124(12)	-0.0030(9)	0.0039(10)	0.0006(9)
C16	0.0145(12)	0.0144(12)	0.0136(13)	-0.0021(9)	0.0050(10)	0.0021(9)
C17	0.0203(13)	0.0185(13)	0.0145(13)	0.0013(10)	0.0093(11)	0.0053(10)
C18	0.0167(13)	0.0237(14)	0.0137(13)	-0.0029(10)	0.0019(11)	0.0084(10)
C19	0.0123(12)	0.0206(14)	0.0194(14)	-0.0069(11)	0.0029(11)	0.0002(10)
C20	0.0149(12)	0.0158(12)	0.0160(13)	-0.0030(10)	0.0046(10)	-0.0001(9)
C21	0.0201(14)	0.0173(13)	0.0145(13)	0.0022(10)	0.0057(11)	-0.0013(10)
C22	0.0244(15)	0.0312(17)	0.0196(15)	-0.0011(12)	0.0006(12)	0.0044(12)
C23	0.0187(14)	0.0177(13)	0.0224(15)	-0.0005(11)	0.0026(12)	-0.0056(10)
C24	0.0171(13)	0.0135(12)	0.0115(12)	-0.0048(9)	0.0061(10)	-0.0059(9)
C25	0.0191(13)	0.0156(13)	0.0210(15)	0.0006(10)	0.0076(12)	0.0013(10)
C26	0.0206(15)	0.0284(16)	0.0227(16)	-0.0098(12)	-0.0019(12)	-0.0007(11)
C27	0.0171(13)	0.0180(13)	0.0118(13)	-0.0002(10)	-0.0002(10)	-0.0011(10)
C28	0.0134(13)	0.0349(16)	0.0199(15)	-0.0026(12)	0.0036(11)	-0.0019(11)
Re2	0.01486(5)	0.00980(5)	0.01108(5)	-0.00157(4)	0.00483(4)	-0.00120(3)
02	0.0229(10)	0.0135(9)	0.0263(11)	0.0016(8)	0.0071(9)	0.0015(7)

	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U_{12}
N6	0.0187(11)	0.0117(10)	0.0138(11)	-0.0019(8)	0.0060(9)	-0.0021(8)
N7	0.0219(12)	0.0125(10)	0.0164(12)	-0.0003(8)	0.0039(10)	0.0026(8)
N8	0.0185(11)	0.0110(10)	0.0125(11)	-0.0022(8)	0.0054(9)	0.0001(8)
N9	0.0206(12)	0.0146(11)	0.0154(12)	-0.0006(9)	0.0069(10)	-0.0004(8)
N10	0.0176(11)	0.0161(11)	0.0136(11)	-0.0018(8)	0.0030(9)	-0.0018(8)
C29	0.0303(15)	0.0133(13)	0.0161(14)	0.0008(10)	0.0090(12)	-0.0021(10)
C30	0.0309(16)	0.0184(14)	0.0165(14)	0.0036(10)	0.0064(12)	0.0011(11)
C31	0.0221(14)	0.0099(12)	0.0224(15)	-0.0022(10)	0.0051(12)	0.0032(10)
C32	0.0188(13)	0.0126(12)	0.0194(14)	-0.0037(10)	0.0059(11)	0.0019(9)
C33	0.0218(14)	0.0206(14)	0.0245(16)	-0.0012(11)	-0.0009(12)	0.0050(11)
C34	0.0222(14)	0.0102(11)	0.0147(13)	-0.0028(9)	0.0088(11)	-0.0044(9)
C35	0.0214(14)	0.0146(13)	0.0202(14)	-0.0028(10)	0.0108(12)	-0.0039(10)
C36	0.0228(15)	0.0187(14)	0.0266(16)	0.0015(11)	0.0126(12)	-0.0022(10)
C37	0.0347(17)	0.0120(13)	0.0328(17)	-0.0039(11)	0.0235(14)	-0.0055(11)
C38	0.0343(17)	0.0167(13)	0.0183(14)	-0.0036(11)	0.0155(13)	-0.0097(11)
C39	0.0282(15)	0.0131(12)	0.0158(14)	-0.0017(10)	0.0115(12)	-0.0083(10)
C40	0.0215(14)	0.0236(14)	0.0202(15)	-0.0067(11)	0.0050(12)	-0.0004(11)
C41	0.041(2)	0.0236(16)	0.048(2)	-0.0076(14)	0.0308(17)	-0.0036(13)
C42	0.0366(17)	0.0204(14)	0.0140(14)	-0.0038(11)	0.0097(13)	-0.0066(12)
C43	0.0165(12)	0.0103(12)	0.0129(12)	-0.0037(9)	0.0067(10)	0.0006(9)
C44	0.0172(12)	0.0124(12)	0.0134(12)	-0.0045(9)	0.0072(10)	-0.0002(9)
C45	0.0195(13)	0.0135(12)	0.0145(13)	-0.0007(10)	0.0076(11)	0.0018(9)
C46	0.0136(12)	0.0160(12)	0.0182(14)	-0.0033(10)	0.0056(11)	0.0016(9)
C47	0.0160(13)	0.0142(13)	0.0194(14)	-0.0051(10)	0.0083(11)	-0.0008(9)
C48	0.0177(13)	0.0126(12)	0.0144(13)	-0.0035(9)	0.0080(10)	-0.0008(9)
C49	0.0233(14)	0.0180(13)	0.0187(14)	0.0001(10)	0.0075(12)	-0.0057(10)
C50	0.0184(13)	0.0224(14)	0.0206(15)	-0.0033(11)	0.0042(11)	0.0004(10)
C51	0.0208(14)	0.0178(13)	0.0195(14)	-0.0002(10)	0.0089(12)	-0.0051(10)
C52	0.0176(13)	0.0130(12)	0.0124(12)	-0.0047(9)	0.0079(10)	-0.0048(9)
C53	0.0178(13)	0.0171(13)	0.0160(13)	0.0000(10)	0.0056(11)	0.0029(10)
C54	0.0193(15)	0.0317(16)	0.0232(16)	-0.0131(12)	-0.0030(12)	0.0013(12)
C55	0.0205(14)	0.0177(13)	0.0173(14)	-0.0028(10)	0.0044(11)	0.0003(10)
C56	0.0217(15)	0.0360(18)	0.0345(19)	-0.0066(14)	0.0175(14)	-0.0038(12)
B1	0.0209(17)	0.0331(19)	0.0181(17)	-0.0017(13)	0.0039(14)	-0.0002(13)
F1	0.0272(10)	0.0333(10)	0.0306(10)	-0.0053(8)	0.0073(8)	-0.0038(7)
F2	0.0325(10)	0.0466(11)	0.0247(10)	-0.0008(8)	0.0114(8)	-0.0024(8)
F3	0.0384(12)	0.0542(13)	0.0434(13)	-0.0282(10)	0.0168(10)	-0.0133(9)
F4	0.0290(11)	0.0746(16)	0.0592(15)	0.0338(12)	0.0075(11)	0.0112(10)
B2	0.025(4)	0.029(4)	0.011(3)	-0.009(2)	0.004(3)	-0.013(3)

	U_{11}	U_{22}	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F5	0.043(4)	0.067(5)	0.018(3)	0.004(3)	0.000(2)	-0.003(3)
F6	0.055(4)	0.084(5)	0.039(4)	-0.011(3)	0.033(3)	-0.020(4)
F7	0.075(4)	0.046(4)	0.024(3)	-0.004(2)	-0.009(3)	-0.040(3)
F8	0.062(4)	0.041(3)	0.066(6)	-0.004(3)	0.029(4)	0.003(3)
B2A	0.061(8)	0.044(6)	0.055(8)	-0.018(5)	0.015(6)	-0.023(5)
F5A	0.128(11)	0.051(5)	0.057(6)	-0.013(4)	0.000(6)	-0.002(6)
F6A	0.082(8)	0.134(9)	0.100(10)	-0.022(7)	0.045(7)	-0.062(6)
F7A	0.113(9)	0.057(6)	0.066(7)	-0.008(5)	-0.001(5)	-0.040(6)
F8A	0.076(7)	0.037(4)	0.080(9)	-0.017(5)	0.038(7)	-0.028(4)
N1S	0.0370(18)	0.051(2)	0.0396(19)	-0.0023(15)	-0.0073(15)	0.0059(14)
C1S	0.046(2)	0.0356(19)	0.0179(16)	-0.0055(13)	-0.0054(16)	0.0047(16)
C2S	0.050(2)	0.054(2)	0.034(2)	-0.0058(17)	0.0120(19)	0.0027(18)

	Х	У	Ζ	U(eq)
H1A	0.2112	0.1478	0.5173	0.023
H1B	0.2331	0.1952	0.5927	0.023
H2A	0.3349	0.1850	0.5922	0.024
H2B	0.3071	0.0886	0.5632	0.024
H3A	0.2584	0.0790	0.4414	0.021
H3B	0.3257	0.0486	0.4353	0.021
H4A	0.3251	0.1546	0.3476	0.019
H4B	0.2604	0.1022	0.3251	0.019
H5A	0.4072	0.1609	0.4583	0.033
H5B	0.4070	0.1046	0.5278	0.033
H5C	0.4133	0.2126	0.5312	0.033
H8	0.0574	0.4284	0.4904	0.024
H10	0.1862	0.4657	0.6700	0.022
H12A	0.1435	0.2736	0.4132	0.04
H12B	0.1000	0.3592	0.3873	0.04
H12C	0.0753	0.2762	0.4251	0.04
H13A	0.0703	0.5770	0.5900	0.043
H13B	0.0852	0.5223	0.6624	0.043
H13C	0.0298	0.4904	0.5989	0.043
H14A	0.2683	0.3254	0.6927	0.03
H14B	0.2956	0.4176	0.6700	0.03
H14C	0.3008	0.3257	0.6288	0.03
H17	0.1669	0.3774	0.1612	0.02
H19	0.0704	0.1715	0.2146	0.021
H21A	0.2657	0.4058	0.2156	0.026
H21B	0.3044	0.3280	0.2636	0.026
H21C	0.2753	0.4091	0.2989	0.026
H22A	0.0647	0.2455	0.0760	0.039
H22B	0.0659	0.3518	0.0919	0.039
H22C	0.0204	0.2870	0.1208	0.039
H23A	0.0979	0.1125	0.3315	0.03
H23B	0.1641	0.1334	0.3820	0.03
H23C	0.1576	0.0614	0.3198	0.03
H26A	0.4246	0.4314	0.6692	0.038
H26B	0.4257	0.5183	0.6210	0.038
H26C	0.4717	0.4358	0.6198	0.038
H28A	0.5018	0.3583	0.4157	0.034

	Х	у	Ζ	U(eq)
H28B	0.4689	0.3775	0.3352	0.034
H28C	0.4832	0.2757	0.3620	0.034
H29A	0.1799	0.6664	0.6222	0.023
H29B	0.1944	0.7150	0.6973	0.023
H30A	0.2986	0.7180	0.7048	0.026
H30B	0.2773	0.6179	0.6777	0.026
H31A	0.2343	0.5996	0.5549	0.022
H31B	0.3039	0.5775	0.5523	0.022
H32A	0.3004	0.6814	0.4633	0.02
H32B	0.2383	0.6231	0.4398	0.02
H33A	0.3792	0.6964	0.5773	0.035
H33B	0.3792	0.6463	0.6494	0.035
H33C	0.3791	0.7545	0.6460	0.035
H36	0.0167	0.9456	0.5863	0.026
H38	0.1352	0.9717	0.7749	0.026
H40A	0.1118	0.8132	0.5066	0.033
H40B	0.0549	0.8821	0.4886	0.033
H40C	0.0474	0.7857	0.5227	0.033
H41A	-0.0132	1.0364	0.6716	0.051
H41B	0.0418	1.0815	0.7291	0.051
H41C	0.0090	0.9917	0.7477	0.051
H42A	0.2214	0.8202	0.7901	0.035
H42B	0.2403	0.9248	0.7914	0.035
H42C	0.2598	0.8570	0.7370	0.035
H45	0.1374	0.8775	0.2643	0.018
H47	0.0456	0.6725	0.3270	0.019
H49A	0.2443	0.9226	0.4026	0.029
H49B	0.2367	0.9128	0.3198	0.029
H49C	0.2754	0.8392	0.3723	0.029
H50A	0.0324	0.8426	0.1984	0.031
H50B	-0.0049	0.7622	0.2240	0.031
H50C	0.0464	0.7396	0.1822	0.031
H51A	0.1392	0.5774	0.4418	0.028
H51B	0.0734	0.6187	0.4431	0.028
H51C	0.1343	0.6545	0.4973	0.028
H54A	0.3730	0.9813	0.7806	0.039
H54B	0.3837	1.0576	0.7270	0.039
H54C	0.4264	0.9693	0.7400	0.039
H56A	0.4639	0.9072	0.5139	0.043

Х	У	Z	U(eq)
0.4237	0.9210	0.4353	0.043
0.4464	0.8218	0.4628	0.043
0.4510	0.7666	0.7666	0.068
0.4715	0.7471	0.8491	0.068
0.4573	0.6646	0.7948	0.068
	x 0.4237 0.4464 0.4510 0.4715 0.4573	xy0.42370.92100.44640.82180.45100.76660.47150.74710.45730.6646	xyz0.42370.92100.43530.44640.82180.46280.45100.76660.76660.47150.74710.84910.45730.66460.7948

Experimental for $C_{18}H_{12}Cl_2F_{10}N_3ORe$ (6)

Data Collection and Processing. The sample **6** was submitted by Jessica Smeltz of the Ison research group at North Carolina State University. The sample was mounted on a Mitegen polyimide micromount with a small amount of Paratone N oil. All X-ray measurements were made on a Bruker-Nonius Kappa Axis X8 Apex2 diffractometer at a temperature of 110 K. The unit cell dimensions were determined from a symmetry constrained fit of 9871 reflections with 4.84° < 2θ < 62.72° . The data collection strategy was a number of ω and φ scans which collected data up to 75.82° (2 θ). The frame integration was performed using SAINT.¹⁰ The resulting raw data was scaled and absorption corrected using a multi-scan averaging of symmetry equivalent data using SADABS.¹¹

Structure Solution and Refinement. The structure was solved by direct methods using the XS program.¹² All non-hydrogen atoms were obtained from the initial solution. The hydrogen atoms were introduced at idealized positions and were allowed to ride on the parent atom. The structural model was fit to the data using full matrix least-squares based on F^2 . The calculated structure factors included corrections for anomalous dispersion from the usual tabulation. The structure was refined using the XL program from SHELXTL,¹³ graphic plots were produced using the NRCVAX crystallographic program suite. Additional information and other relevant literature references can be found in the reference section of the Facility's Web page (http://www.xray.ncsu.edu).

Acknowledgement

The authors wish to thank the Department of Chemistry of North Carolina State University and the State of North Carolina for funding the purchase of the Apex2 diffractometer.

¹⁰ Bruker-Nonius, SAINT version 2009.9, 2009, Bruker-Nonius, Madison, WI 53711, USA

¹¹ Bruker-Nonius, SADABS version 2009.9, 2009, Bruker-Nonius, Madison, WI 53711, USA

¹² Bruker-AXS, XS version 2009.9, 2009, Bruker-AXS, Madison, WI 53711, USA

¹³ Bruker-AXS, XL version 2009.9, 2009, Bruker-AXS, Madison, WI 53711, USA

Figure S11. ORTEP drawing of **6** showing naming and numbering scheme. Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with arbitrary radii for clarity.

Figure S12. ORTEP drawing of **6**. Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with arbitrary radii for clarity.

Figure S13. Stereoscopic ORTEP drawing of **6**. Ellipsoids are at the 50% probability level and hydrogen atoms were drawn with arbitrary radii for clarity.

Formula	C ₁₈ H ₁₁ Cl ₂ F ₁₀ N ₃ ORe
Formula Weight (g/mol)	732.40
Crystal Dimensions (<i>mm</i>)	$0.13 \times 0.10 \times 0.04$
Crystal Color and Habit	green prism
Crystal System	orthorhombic
Space Group	Pbca
Temperature, K	110
a, Å	12.2754(4)
b, Å	18.8021(6)
<i>c</i> , Å	18.9382(6)
α,°	90.00
β,°	90.00
γ,°	90.00
V, Å ³	4371.0(2)
Number of reflections to determine final unit cell	9871
Min and Max 2 θ for cell determination, °	4.84, 62.72
Ζ	8
F(000)	2776
$\rho(g/cm)$	2.226
$\lambda, \dot{A}, (MoK\alpha)$	0.71073
μ (cm ⁻¹)	5.907
Diffractometer Type	Bruker-Nonius Kappa Axis X8
	Apex2
Scan Type(s)	omega and phi scans
Max 2 θ for data collection, °	75.82
Measured fraction of data	0.996
Number of reflections measured	231624
Unique reflections measured	11778
R _{merge}	0.0761
Number of reflections included in refinement	11778
Cut off Threshold Expression	>2sigma(I)
Structure refined using	full matrix least-squares using F^2
Weighting Scheme	calc
	$w=1/[sigma^2(Fo^2)+(0.0285P)^2+4.1]$
	132P] where $P = (Fo^2 + 2Fc^2)/3$
Number of parameters in least-squares	317
R1	0.0323
wR ₂	0.0609
R ₁ (all data)	0.0663
wR ₂ (all data)	0 0703
GOF	1 021
Maximum shift/error	0.006
Min & May needs beights on final AD May (17/Å)	-3 039 3 349
with α wax peak neights on final ΔF Map (e^{-}/A)	5.057, 5.577

Where: $R_1 = \Sigma(|F_0| - |F_c|) / \Sigma F_0$ $wR_2 = [\Sigma(w(F_0^2 - F_c^2)^2) / \Sigma(wF_0^4)]^{\frac{1}{2}}$ $GOF = [\Sigma(w(F_0^2 - F_c^2)^2) / (No. of reflns. - No. of params.)]^{\frac{1}{2}}$

Table S16. Atomic Coordinates for 6

Atom	Х	У	Z	Uiso/equiv
Re1	0.771966(7)	0.786730(5)	0.658621(5)	0.01296(3)
Cl1	0.88517(5)	0.78617(3)	0.76427(3)	0.01889(11)
Cl2	0.92906(5)	0.75536(3)	0.59303(3)	0.02043(11)
C1	0.7948(2)	0.88374(14)	0.64566(13)	0.0199(5)
01	0.80875(18)	0.94472(10)	0.63811(12)	0.0297(4)
N1	0.64501(16)	0.79359(10)	0.74035(10)	0.0142(3)
N2	0.72678(16)	0.67108(11)	0.67347(10)	0.0149(4)
N3	0.66967(17)	0.77449(11)	0.58290(11)	0.0167(4)
C2	0.63401(18)	0.85616(12)	0.78433(12)	0.0138(4)
C3	0.6609(2)	0.86164(13)	0.85539(12)	0.0170(4)
C4	0.6357(2)	0.92291(14)	0.89356(13)	0.0204(5)
C5	0.5827(2)	0.97881(13)	0.86275(14)	0.0208(5)
C6	0.5571(2)	0.97501(13)	0.79184(14)	0.0186(4)
C7	0.58334(19)	0.91488(12)	0.75374(12)	0.0158(4)
F3	0.70865(13)	0.80894(8)	0.89139(8)	0.0214(3)
F4	0.66134(15)	0.92607(9)	0.96242(8)	0.0298(4)
F5	0.55594(15)	1.03645(8)	0.89999(9)	0.0306(4)
F6	0.50522(13)	1.02884(8)	0.76026(9)	0.0261(3)
F7	0.55593(12)	0.91205(8)	0.68558(8)	0.0205(3)
C8	0.6425(2)	0.72381(12)	0.77929(12)	0.0165(4)
C9	0.6335(2)	0.66656(13)	0.72393(13)	0.0188(4)
C10	0.8157(2)	0.62343(13)	0.69841(14)	0.0215(5)
C11	0.6916(2)	0.64730(13)	0.60226(13)	0.0207(5)
C12	0.6193(2)	0.70362(13)	0.56935(14)	0.0211(5)
C13	0.6313(2)	0.82689(13)	0.53450(12)	0.0166(4)
C14	0.5257(2)	0.85326(13)	0.53851(12)	0.0182(4)
C15	0.4874(2)	0.90384(14)	0.49184(14)	0.0218(5)
C16	0.5541(2)	0.92774(14)	0.43830(14)	0.0243(5)
C17	0.6575(2)	0.90139(15)	0.43170(13)	0.0259(6)
C18	0.6962(2)	0.85167(14)	0.47930(13)	0.0212(5)
F14	0.45804(12)	0.82843(9)	0.58806(8)	0.0237(3)
F15	0.38537(14)	0.92864(9)	0.49822(9)	0.0307(4)
F16	0.51646(17)	0.97623(9)	0.39266(9)	0.0371(4)
F17	0.72083(16)	0.92332(11)	0.37818(9)	0.0385(5)
F18	0.79652(14)	0.82584(10)	0.47019(9)	0.0310(4)
H8A	0.5792	0.7220	0.8117	0.020
H8B	0.7099	0.7175	0.8073	0.020
H9A	0.6333	0.6193	0.7470	0.023
H9B	0.5641	0.6721	0.6979	0.023
H10A	0.7912	0.5739	0.6962	0.032
H10B	0.8346	0.6355	0.7472	0.032
H10C	0.8799	0.6296	0.6682	0.032
H11A	0.6511	0.6019	0.6061	0.025
H11B	0.7562	0.6392	0.5720	0.025
H12A	0.6128	0.6954	0.5179	0.025
H12B	0.5456	0.7016	0.5904	0.025

Atom	u ¹¹	u ²²	u ³³	u ¹²	u ¹³
Re1	0.01040(4)	0.01433(4)	0.01415(4)	-0.00048(3)	-0.00012(3)
Cl1	0.0124(2)	0.0295(3)	0.0148(2)	-0.0024(2)	-0.00119(18)
Cl2	0.0146(2)	0.0305(3)	0.0161(2)	0.0027(2)	0.0021(2)
C1	0.0156(10)	0.0229(12)	0.0211(11)	-0.0035(9)	0.0031(8)
01	0.0318(11)	0.0201(9)	0.0372(11)	-0.0074(8)	0.0032(9)
N1	0.0155(9)	0.0123(8)	0.0148(8)	-0.0002(7)	0.0018(7)
N2	0.0135(9)	0.0146(8)	0.0167(8)	0.0027(7)	-0.0001(7)
N3	0.0148(9)	0.0176(9)	0.0177(9)	-0.0012(7)	-0.0013(7)
C2	0.0120(9)	0.0147(9)	0.0147(9)	-0.0013(8)	0.0015(7)
C3	0.0167(10)	0.0197(10)	0.0145(10)	0.0023(9)	-0.0003(8)
C4	0.0229(12)	0.0248(12)	0.0134(10)	0.0011(10)	0.0002(9)
C5	0.0233(12)	0.0167(11)	0.0223(11)	0.0008(9)	0.0048(10)
C6	0.0173(11)	0.0141(10)	0.0243(12)	0.0013(8)	0.0018(9)
C7	0.0139(10)	0.0174(10)	0.0159(10)	-0.0002(8)	-0.0007(8)
F3	0.0246(8)	0.0233(7)	0.0165(7)	0.0062(6)	-0.0033(6)
F4	0.0426(10)	0.0319(9)	0.0149(7)	0.0042(8)	-0.0033(7)
F5	0.0388(10)	0.0222(8)	0.0310(9)	0.0052(7)	0.0067(7)
F6	0.0293(8)	0.0181(7)	0.0308(9)	0.0075(6)	0.0009(7)

 Table S17. Anisotropic Displacement Parameters for 6

N3	0.0148(9)	0.0176(9)	0.0177(9)	-0.0012(7)	-0.0013(7)	0.0007(7)
C2	0.0120(9)	0.0147(9)	0.0147(9)	-0.0013(8)	0.0015(7)	-0.0009(8)
C3	0.0167(10)	0.0197(10)	0.0145(10)	0.0023(9)	-0.0003(8)	0.0000(8)
C4	0.0229(12)	0.0248(12)	0.0134(10)	0.0011(10)	0.0002(9)	-0.0018(9)
C5	0.0233(12)	0.0167(11)	0.0223(11)	0.0008(9)	0.0048(10)	-0.0046(9)
C6	0.0173(11)	0.0141(10)	0.0243(12)	0.0013(8)	0.0018(9)	0.0023(9)
C7	0.0139(10)	0.0174(10)	0.0159(10)	-0.0002(8)	-0.0007(8)	0.0011(8)
F3	0.0246(8)	0.0233(7)	0.0165(7)	0.0062(6)	-0.0033(6)	0.0022(6)
F4	0.0426(10)	0.0319(9)	0.0149(7)	0.0042(8)	-0.0033(7)	-0.0056(6)
F5	0.0388(10)	0.0222(8)	0.0310(9)	0.0052(7)	0.0067(7)	-0.0107(7)
F6	0.0293(8)	0.0181(7)	0.0308(9)	0.0075(6)	0.0009(7)	0.0040(6)
F7	0.0235(7)	0.0207(7)	0.0172(7)	0.0028(6)	-0.0038(6)	0.0023(6)
C8	0.0161(10)	0.0160(10)	0.0174(10)	-0.0007(8)	0.0018(8)	0.0025(8)
C9	0.0163(11)	0.0168(10)	0.0232(11)	-0.0026(9)	0.0007(9)	-0.0002(9)
C10	0.0208(12)	0.0182(11)	0.0253(12)	0.0067(9)	-0.0041(10)	0.0003(9)
C11	0.0240(12)	0.0180(11)	0.0202(11)	-0.0001(10)	-0.0038(9)	-0.0037(9)
C12	0.0245(12)	0.0178(11)	0.0209(11)	-0.0036(9)	-0.0065(10)	0.0000(9)
C13	0.0189(11)	0.0178(10)	0.0133(10)	-0.0006(9)	-0.0039(8)	0.0008(8)
C14	0.0183(11)	0.0212(11)	0.0150(10)	-0.0022(9)	-0.0024(8)	-0.0012(9)
C15	0.0223(12)	0.0208(11)	0.0225(12)	0.0017(10)	-0.0112(10)	-0.0035(9)
C16	0.0372(15)	0.0164(11)	0.0192(11)	-0.0039(11)	-0.0100(11)	0.0011(9)
C17	0.0346(15)	0.0268(13)	0.0163(11)	-0.0102(11)	-0.0012(10)	0.0044(10)
C18	0.0213(11)	0.0238(12)	0.0185(11)	-0.0036(10)	-0.0015(9)	-0.0006(9)
F14	0.0176(7)	0.0339(9)	0.0198(7)	-0.0017(6)	0.0013(6)	0.0011(6)
F15	0.0252(8)	0.0296(9)	0.0374(9)	0.0078(7)	-0.0130(7)	-0.0028(7)
F16	0.0545(12)	0.0273(9)	0.0296(9)	-0.0033(8)	-0.0201(9)	0.0108(7)
F17	0.0453(12)	0.0472(12)	0.0230(8)	-0.0163(9)	0.0013(8)	0.0145(8)
F18	0.0224(8)	0.0431(10)	0.0274(8)	0.0016(7)	0.0070(7)	0.0050(8)

u23

-0.00119(3) -0.0024(2) -0.0034(2) 0.0000(9) 0.0032(8) 0.0005(7) -0.0013(7)

Table S18. Bond Lengths for 6

Re1-C1	1.862(3)	C8-C9	1.507(3)
Re1-N3	1.920(2)	C8-H8A	0.9900
Re1-N1	2.200(2)	C8-H8B	0.9900
Re1-N2	2.262(2)	С9-Н9А	0.9900
Re1-Cl2	2.3685(6)	С9-Н9В	0.9900
Re1-Cl1	2.4361(6)	C10-H10A	0.9800
C1-O1	1.168(3)	C10-H10B	0.9800
N1-C2	1.448(3)	C10-H10C	0.9800
N1-C8	1.505(3)	C11-C12	1.515(4)
N2-C11	1.485(3)	C11-H11A	0.9900
N2-C10	1.489(3)	C11-H11B	0.9900
N2-C9	1.494(3)	C12-H12A	0.9900
N3-C13	1.426(3)	C12-H12B	0.9900
N3-C12	1.491(3)	C13-C14	1.391(3)
C2-C3	1.389(3)	C13-C18	1.394(4)
C2-C7	1.393(3)	C14-F14	1.337(3)
C3-F3	1.338(3)	C14-C15	1.381(3)
C3-C4	1.395(3)	C15-F15	1.342(3)
C4-F4	1.343(3)	C15-C16	1.378(4)
C4-C5	1.367(4)	C16-F16	1.339(3)
C5-F5	1.334(3)	C16-C17	1.368(4)
C5-C6	1.381(4)	C17-F17	1.342(3)
C6-F6	1.337(3)	C17-C18	1.383(4)
C6-C7	1.379(3)	C18-F18	1.335(3)
C7-F7	1.335(3)		

Table S19. Bond Angles for 6

C1 Rel N3	96.74(10)	N1 C8 H8A	110 /
C1-Re1-N1	90.74(10) 08.15(0)	C9-C8-H8A	110.4
$N3_Re1_N1$	93.07(8)	N1_C8_H8B	110.4
$C1_Re1_N2$	$174 \ 44(9)$	C9-C8-H8B	110.4
$N3_Re1_N2$	79 47(8)	H8A_C8-H8B	108.6
$N1_Re1_N2$	78.18(7)	N2_C9_C8	110.30(10)
$C1_Re1_C12$	93.00(8)	N2-C9-H9A	100.57(17)
$N_3 R_{e1} C_{12}$	96.37(6)		109.0
N_1 Re1-Cl2	163 79(5)	N2_C9_H9B	109.0
N1-Re1-C12 N2-Re1-C12	91 A6(5)	C8-C9-H9B	109.0
C1 Re1 C11	91.40(3) 91.53(8)		109.0
$N3_Re1_C11$	170 40(6)	N2-C10-H10A	100.1
NJ-Re1-Cl1	80.01(6)	N2-C10-H10R	109.5
$N_2Re_1C_11$	0103(5)	H10A_C10_H10B	109.5
$C12_Re1_C11$	91.93(3) 88.01(2)	N2-C10-H10C	109.5
$O1_C1_Re1$	170 A(2)	H10A_C10_H10C	109.5
$C_2 N1 C_8$	1/9.4(2) 115 12(18)	H10R C10 H10C	109.5
$C_2 N1 Re1$	113.12(10) 121.23(14)	N2 C11 C12	109.5 109.5(2)
C_2 -N1-Re1	121.23(14) 107.05(14)	N2-C11-C12 N2-C11-H11A	109.3(2) 100.8
$C_{11} N_2 C_{10}$	107.93(14) 108.67(10)	$C_{12} C_{11} H_{11} \Lambda$	109.8
C11 N2 C0	100.07(19) 100.02(10)	N2 C11 H11P	109.8
C11 - N2 - C9	109.93(19) 108.04(10)	$C_{12} C_{11} U_{11} D$	109.8
C10-N2-C9 C11 N2 Re1	100.94(19) 104.36(14)	H11A C11 H11B	109.8
C11 - N2 - Rc1	104.30(14) 115.00(15)	N3 C12 C11	108.2 108.1(2)
$C_1 N_2 P_{01}$	113.99(13) 108.80(14)	N3-C12-C11 N2-C12-H12A	100.1(2)
$C_{12} N_2 C_{12}$	100.00(14) 111 73(10)	C11 C12 H12A	110.1
C13 - N3 - C12 C12 - N2 - D21	111.73(19) 127.82(16)	N2 C12 H12P	110.1
C12 N3 Pel	127.02(10) 120 $44(16)$	C11 C12 H12B	110.1
C12-N3-Ke1	120.44(10) 116.7(2)	H12A C12 H12B	10.1
$C_3 C_2 N_1$	110.7(2) 126 5(2)	C14 C13 C18	100.4 117.0(2)
C_3 - C_2 - N_1	120.3(2) 116 5(2)	C14 C13 C18	117.0(2) 121.2(2)
$C_7 - C_2 - N_1$	110.3(2) 122.0(2)	C18 C13 N3	121.3(2) 121.6(2)
$F_3-C_3-C_4$	122.9(2) 116 $A(2)$	F14-C14-C15	121.0(2) 118.6(2)
Γ_{3} - C_{3} - C_{4}	110.4(2) 120.7(2)	F14-C14-C13	110.0(2) 110.5(2)
$E_2 - C_3 - C_4$	120.7(2) 110 5(2)	$C_{15} C_{14} C_{13}$	117.3(2) 121.0(2)
F4-C4-C3	119.3(2) 110.2(2)	F15 C15 C16	121.9(2) 120.5(2)
Γ	119.2(2) 121 3(2)	$F_{15} = C_{15} = C_{10}$	120.3(2) 110 0(2)
$C_3 - C_4 - C_3$	121.3(2) 121.1(2)	$C_{16} C_{15} C_{14}$	119.9(2) 110.6(2)
F5-C5-C6	121.1(2) 120.0(2)	F16-C16-C17	119.0(2) 120 5(3)
$C_{1}C_{2}C_{2}C_{3}$	120.0(2) 118 0(2)	F16 C16 C15	120.5(3) 110 5(3)
E6 C6 C7	110.9(2) 110.8(2)	$C_{17} C_{16} C_{15}$	119.3(3) 120.0(2)
F6 C6 C5	119.8(2) 120.2(2)	E17 C17 C16	120.0(2) 110 7(2)
Γ_0 -C0-C3	120.3(2) 110 0(2)	F17 - C17 - C18	119.7(2) 120.0(3)
$E_{7-C_{7-C_{6}}}$	119.9(2) 118.7(2)	$C_{16}C_{17}C_{18}$	120.0(3) 120.2(2)
$F_7 = C_7 = C_0$	110.7(2) 118 0(2)	E18 C19 C17	120.3(2) 118 6(2)
$\frac{1}{1} - \frac{1}{1} - \frac{1}$	110.7(2) 122 $1(2)$	F10-C10-C17	110.0(2) 120.1(2)
\mathbb{N}	122.4(2)	110-010-013	120.1(2) 121.2(2)
INI-CO-CY	100.40(19)	01/-010-013	121.2(3)

Table S20. Torsion Angles for 6

N3-Re1-C1-O1	119(30)	F4-C4-C5-C6	179.7(2)
N1-Re1-C1-O1	24(30)	C3-C4-C5-C6	-2.1(4)
N2-Re1-C1-O1	72(30)	F5-C5-C6-F6	-0.2(4)
Cl2-Re1-C1-O1	-144(30)	C4-C5-C6-F6	179.9(2)
Cl1-Re1-C1-O1	-56(30)	F5-C5-C6-C7	-179.0(2)
C1-Re1-N1-C2	-22.89(19)	C4-C5-C6-C7	1.2(4)
N3-Re1-N1-C2	-120.28(17)	F6-C6-C7-F7	0.1(3)
N2-Re1-N1-C2	161.35(18)	C5-C6-C7-F7	178.8(2)
Cl2-Re1-N1-C2	110.2(2)	F6-C6-C7-C2	-177.7(2)
Cl1-Re1-N1-C2	67.24(16)	C5-C6-C7-C2	1.0(4)
C1-Re1-N1-C8	-158.79(16)	C3-C2-C7-F7	-180.0(2)
N3-Re1-N1-C8	103.81(15)	N1-C2-C7-F7	-4.9(3)
N2-Re1-N1-C8	25.45(14)	C3-C2-C7-C6	-2.2(3)
Cl2-Re1-N1-C8	-25.8(3)	N1-C2-C7-C6	172.9(2)
Cl1-Re1-N1-C8	-68.67(14)	C2-N1-C8-C9	169.50(19)
C1-Re1-N2-C11	72.8(10)	Re1-N1-C8-C9	-51.6(2)
N3-Re1-N2-C11	25.55(15)	C11-N2-C9-C8	-148.3(2)
N1-Re1-N2-C11	121.91(15)	C10-N2-C9-C8	92.7(2)
Cl2-Re1-N2-C11	-70.66(14)	Re1-N2-C9-C8	-34.6(2)
Cl1-Re1-N2-C11	-158.72(14)	N1-C8-C9-N2	57.9(2)
C1-Re1-N2-C10	-167.7(9)	C10-N2-C11-C12	-167.9(2)
N3-Re1-N2-C10	145.05(18)	C9-N2-C11-C12	73.0(3)
N1-Re1-N2-C10	-118.59(17)	Re1-N2-C11-C12	-43.5(2)
Cl2-Re1-N2-C10	48.84(16)	C13-N3-C12-C11	159.2(2)
Cl1-Re1-N2-C10	-39.22(16)	Re1-N3-C12-C11	-21.2(3)
C1-Re1-N2-C9	-44.5(10)	N2-C11-C12-N3	43.5(3)
N3-Re1-N2-C9	-91.76(16)	C12-N3-C13-C14	71.6(3)
N1-Re1-N2-C9	4.60(15)	Re1-N3-C13-C14	-108.0(2)
Cl2-Re1-N2-C9	172.03(14)	C12-N3-C13-C18	-105.6(3)
Cl1-Re1-N2-C9	83.98(14)	Re1-N3-C13-C18	74.9(3)
C1-Re1-N3-C13	1.2(2)	C18-C13-C14-F14	176.4(2)
N1-Re1-N3-C13	99.9(2)	N3-C13-C14-F14	-0.9(3)
N2-Re1-N3-C13	177.1(2)	C18-C13-C14-C15	-2.5(4)
Cl2-Re1-N3-C13	-92.6(2)	N3-C13-C14-C15	-179.8(2)
Cl1-Re1-N3-C13	150.6(3)	F14-C14-C15-F15	2.1(3)
C1-Re1-N3-C12	-178.32(19)	C13-C14-C15-F15	-179.0(2)
N1-Re1-N3-C12	-79.61(19)	F14-C14-C15-C16	-177.0(2)
N2-Re1-N3-C12	-2.43(18)	C13-C14-C15-C16	1.9(4)
Cl2-Re1-N3-C12	87.88(18)	F15-C15-C16-F16	0.2(4)
Cl1-Re1-N3-C12	-28.9(5)	C14-C15-C16-F16	179.3(2)
C8-N1-C2-C3	25.3(3)	F15-C15-C16-C17	-179.1(2)
Re1-N1-C2-C3	-107.7(2)	C14-C15-C16-C17	-0.1(4)
C8-N1-C2-C7	-149.1(2)	F16-C16-C17-F17	-1.3(4)
Re1-N1-C2-C7	77.8(2)	C15-C16-C17-F17	178.0(2)

C7-C2-C3-F3	179.2(2)	F16-C16-C17-C18	179.5(2)
N1-C2-C3-F3	4.7(4)	C15-C16-C17-C18	-1.1(4)
C7-C2-C3-C4	1.2(4)	F17-C17-C18-F18	-0.8(4)
N1-C2-C3-C4	-173.2(2)	C16-C17-C18-F18	178.4(2)
F3-C3-C4-F4	0.9(4)	F17-C17-C18-C13	-178.7(2)
C2-C3-C4-F4	179.0(2)	C16-C17-C18-C13	0.5(4)
F3-C3-C4-C5	-177.2(2)	C14-C13-C18-F18	-176.5(2)
C2-C3-C4-C5	0.9(4)	N3-C13-C18-F18	0.7(4)
F4-C4-C5-F5	-0.1(4)	C14-C13-C18-C17	1.3(4)
C3-C4-C5-F5	178.0(2)	N3-C13-C18-C17	178.6(2)

Figure S14. ¹H NMR (376 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][OTf]$ (2a).

Figure S15. ¹³C NMR (376 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][OTf]$ (2a). Residual $[DAAm-C_6F_5]^+$ and impurity peaks observed at 139.71 ppm, 56.83 ppm, 41.68 ppm and 40.83 ppm, and 47.53 respectively.

-75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 Chemical Shift (ppm)

Figure S16. ¹⁹F NMR (376 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][OTf]$ (2a). Residual $[DAAm-C_6F_5]^+$ peaks observed at -159.83 ppm, -166.49 ppm and -172.85 ppm.

Figure S17. ¹H NMR (400 MHz, CD₃CN) spectrum of [(DAAm-Mes)Re(CO)(NCCH₃)₂][OTf] (**2b**). Residual ether and unidentified impurity peaks observed at 3.40 ppm and 1.12 ppm, and 1.27 ppm and 0.88 ppm respectively.

Figure S18. ¹³C NMR (126 MHz, CD₃CN) spectrum of [(DAAm-Mes)Re(CO)(NCCH₃)₂][OTf] (2b).

(2b).

Figure S20. ¹H NMR (376 MHz, CD₃CN) spectrum of [(DAAm-C₆F₅)Re(CO)(NCCH₃)₂][BAr^F₄] (**3a**). Residual H₂O and unidentified impurity peaks observed at 2.17 ppm and 1.85 ppm respectively.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

Figure S21. ¹³C NMR (101 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][BAr^F_4]$ (**3a**). Residual $[DAAm-C_6F_5]^+$ peaks observed at 57.18 ppm, 41.88 ppm and 41.10 ppm.

-55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 Chemical Shift (ppm)

Figure S22. ¹⁹F NMR (376 MHz, CD₃CN) spectrum of [(DAAm- C_6F_5)Re(CO)(NCCH₃)₂][BAr^F₄] (**3a**). Residual [DAAm- C_6F_5]⁺ peaks observed at -159.83 ppm, - 166.49 ppm and -172.85 ppm.

Figure S23. ¹ H NMR (376 MHz, CD₃CN) spectrum of [(DAAm-Mes)Re(CO)(NCCH₃)₂][BAr^F₄] (**3b**). Residual [DAAm-Mes]⁺ and H₂O peaks observed at 3.79 ppm, 2.27 ppm, 2.09 ppm and 2.14 ppm respectively.

5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 Chemical Shift (ppm)

Figure S25. ¹H NMR (176 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][BF_4]$ (4a).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 Chemical Shift (ppm)

Figure S26. ¹³C NMR (176 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][BF_4]$ (4a).

-148 -149 -150 -151 -152 -153 -154 -155 -156 -157 -158 -159 -160 -161 -162 -163 -164 -165 -166 -167 -168 Chemical Shift (ppm)

Figure S27. ¹⁹F NMR (376 MHz, CD₃CN) spectrum of $[(DAAm-C_6F_5)Re(CO)(NCCH_3)_2][BF_4]$ (4a).

(**4b**).

Figure S29. ¹³C NMR (376 MHz, CD₃CN) spectrum of [(DAAm-Mes)Re(CO)(NCCH₃)₂][BF₄] (4b).

Figure S30. ¹⁹F NMR (376 MHz, CD₃CN) spectrum of $[(DAAm-Mes)Re(CO)(NCCH_3)_2][BF_4]$ (4b).

(5**a**).

Figure S32. ¹³C NMR (101 MHz, CD₃CN) spectrum of $[(DAAm-Mes)Re(CO)(NCCH_3)_2][PF_6]$ (**5a**). Residual acetic acid and $[DAAm-C_6F_5]^+$ peaks observed at 173.60 ppm and 20.56 ppm, and 140.16 ppm, 135.94 ppm, 56.90 ppm, 41.68 ppm and 40.93 ppm respectively.

-65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 Chemical Shift (ppm)

Figure S33. ¹⁹F NMR (376 MHz, CD₃CN) spectrum of $[(DAAm-Mes)Re(CO)(NCCH_3)_2][PF_6]$ (**5a**). Residual unidentified impurity and $[DAAm-C_6F_5]^+$ peaks observed at -151.77 ppm, -159.83 ppm, -166.49 ppm and -172.85 ppm respectively.

Figure S34. ¹H NMR (376 MHz, CD_3CN) spectrum of [(DAAm-Mes)Re(CO)(NCCH₃)₂][PF₆] (5b).

Figure S35. ¹³C NMR (376 MHz, CD₃CN) spectrum of [(DAAm-Mes)Re(CO)(NCCH₃)₂][PF₆] (**5b**).

(**5b**).

6.8 6.6 6.4 6.2 6.0 5.8 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 Chemical Shift (ppm)

Figure S37. ¹H NMR (400 MHz, CD₃CN) spectrum of $[(DAmA-C_6F_5)Re(CO)(Cl)_2]$ (6). Residual $[DAAm-C_6F_5]^+$ and H₂O peaks observed at 3.69 ppm, 2.82 ppm and 2.14 ppm respectively.

Figure S38. ¹⁹F NMR (376 MHz, CD₃CN) spectrum of $[(DAmA-C_6F_5)Re(CO)(Cl)_2]$ (6). Residual $[DAAm-C_6F_5]^+$ peaks observed at -150.87 ppm, -159.92 ppm and -166.81 ppm.