Electronic Supporting Information for

Cadmium complexes bearing $^{Me2}N^{A}E^{O}$ (E = S, Se)

organochalcogenoalkoxides and their zinc and mercury analogues

Alexandra Pop,^a Clément Bellini,^b Răzvan Şuteu,^a Vincent Dorcet,^b Thierry Roisnel,^b

Jean-François Carpentier,^b Anca Silvestru^{*a} and Yann Sarazin^{*b}

^{*a*} Supramolecular Organic and Organometallic Chemistry Centre, Chemistry Department, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, RO-400028 Cluj-Napoca, Romania. E-mail: ancas@chem.ubbcluj.ro; Fax: (+40) 264-590818; Tel: (+40) 264-593833

^b Université de Rennes 1, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226, Campus de Beaulieu, F-35042 Rennes Cedex, France. E-mail: yann.sarazin@univ-rennes1.fr; Fax: (+33) 2
23 23 69 39; Tel: (+33) 2 23 23 30 19

Contents

- Figure S1. X-ray structure of $[\{L^{S,(CH3)2}\}CdN(SiMe_3)_2]_2$ ([1]₂)
- Figure S2. X-ray structure of complex **3**
- Figure S3. ¹H NMR spectrum of complex 1
- Figure S4. ¹H NMR spectrum of complex 2
- Figure S5. ¹H NMR spectrum of complex **3**
- Figure S6. ¹H NMR spectrum of complex **4**
- Figure S7. ¹H NMR spectrum of complex **5**
- Figure S8. 1 H NMR spectrum of complex 6
- Figure S9. ¹H NMR spectrum of complex 7
- Figure S10. ¹H NMR spectrum of complex 8
- Figure S11. ¹H NMR spectrum of complex 9
- Figure S12. ¹H NMR spectrum of complex **10**
- Figure S13. ¹H NMR spectrum of complex **11**
- Figure S14. ¹H VT NMR for complex **4**
- Figure S15. ¹⁹F VT NMR for complex 4
- Figure S16. Diffusion molecular weight analysis for complex 2
- Figure S17. Synthesis and ¹H NMR spectrum of $[{L^{S,(CH3)2}}HgPh]$ (12)
- Figure S18. Synthesis and ¹H NMR spectrum [{L^{Se,(CH3)2}}HgPh] (13)
- Table S1.Tables of crystallographic data for compounds 1-3
- Table S2.Tables of crystallographic data for compounds 4, 6 and 7
- Table S3.Tables of crystallographic data for compounds 9-10

Figure S1. X-ray structure of $[\{L^{S,(CH3)2}\}CdN(SiMe_3)_2]_2$ ([1]₂)

Rendering of the molecular solid-state structure of $[\{L^{S,(CH3)2}\}CdN(SiMe_3)_2]_2$ ([1]₂). H atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Cd1-N1 = 2.099(2), C1-O1 = 22.1903(16), Cd1-O1' = 22.1975(17), Cd1-S1' = 22.7390(6); N(1)-Cd(1)-O(1) = 2128.96(7), N1-Cd1-O1' = 2136.79(8), O1-Cd1-O1' = 281.34(6), N1-Cd1-S1' = 2117.18(6), O1-Cd1-S1' = 2100.40(5), O1#1-Cd1-S1' = 278.18(5).

Figure S2. X-ray structure of $[\{L^{S,(CF3)2}\}CdN(SiMe_3)_2]$ (3)

Rendering of the molecular solid-state structure of $[\{L^{S,(CF3)2}\}CdN(SiMe_3)_2]$ (3). H atoms omitted for clarity. Selected bond lengths (Å) and angles (°): Cd1-N1 = 2.0849(15), Cd1-O21 = 2.1504(13), Cd1-N11 = 2.3384(15), Cd1-S11 = 2.6563(5); N1-Cd1-O21 = 136.04(6), N1-Cd1-N11 = 119.19(6), O21-Cd1-N11 = 89.33(5), N1-Cd1-S11 = 126.91(5), O21-Cd1-S11 = 79.22(4), N11-Cd1-S11 = 93.04(4).

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): $\delta = 8.35$ (dd, ${}^4J_{\text{HH}} = 1.1$ Hz, ${}^3J_{\text{HH}} = 7.8$ Hz, 1H, arom- H_6), 7.29 (dd, ${}^4J_{\text{HH}} = 1.3$ Hz, ${}^3J_{\text{HH}} = 7.7$ Hz, 1H, arom- H_3), 7.18 (dt, ${}^4J_{\text{HH}} = 1.6$ Hz, ${}^3J_{\text{HH}} = 7.6$ Hz, 1H, arom- H_5), 7.07 (dt, ${}^4J_{\text{HH}} = 1.1$ Hz, ${}^3J_{\text{HH}} = 7.5$ Hz, 1H, arom- H_5), 3.53 (s, 2H, ArC H_2 N), 3.16 (s, 2H, SC H_2), 2.11 (s, 6H, N(C H_3)₂), 1.45 (s, 6H, C(C H_3)₂O), 0.37 (s, 18H, SiC H_3) ppm.

Figure S4. ¹H NMR spectrum of complex 2

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): $\delta = 8.44$ (dd, ${}^4J_{\text{HH}} = 1.0$ Hz, ${}^3J_{\text{HH}} = 7.7$ Hz, 1H, arom- H_6), 7.13-7.17 (overlapping m, 2H, arom- H_3 + arom- H_4), 7.03 (dt, ${}^4J_{\text{HH}} = 1.0$ Hz, ${}^3J_{\text{HH}} = 7.4$ Hz, 1H, arom- H_5), 3.40 (s, 2H, ArC H_2 N), 3.22 (s, 2H, SeC H_2), 2.07 (s, 6H, NC H_3), 1.46 (s, 6H, C(C H_3)₂O), 0.42 (s, 18H, SiC H_3) ppm.

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): $\delta = 7.26$ (d, ${}^{3}J_{HH} = 7.9$ Hz, 1H, arom- H_6), 6.84 (dt, ${}^{4}J_{HH} = 1.4$, ${}^{3}J_{HH} = 7.4$ Hz, 1H, arom- H_5), 6.74 (dt, ${}^{4}J_{HH} = 1.5$ Hz, ${}^{3}J_{HH} = 7.5$ Hz, 1H, arom- H_4), 6.49 (dd, ${}^{4}J_{HH} = 1.6$ Hz, ${}^{3}J_{HH} = 7.4$ Hz, 1H, arom- H_3), 4.29 (br m, 1H, SC H_2), 3.50 (d, ${}^{2}J_{HH} = 13.2$ Hz, 1H, ArCHHN), 2.54 (d, ${}^{2}J_{HH} = 13.2$ Hz, 1H, ArCHHN), 2.19 (overlapping m, 4H, SC H_2 + NC H_3), 1.58 (s, 3H, NC H_3), 0.26 (s, 18H, SiC H_3) ppm.

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): $\delta = 7.25$ (d, ${}^{3}J_{HH} = 8.0$ Hz, 1H, arom- H_6), 6.83 (dt, ${}^{4}J_{HH} = 1.4$, ${}^{3}J_{HH} = 7.4$ Hz, 1H, arom- H_5), 6.72 (dt, ${}^{4}J_{HH} = 1.6$ Hz, ${}^{3}J_{HH} = 7.6$ Hz, 1H, arom- H_4), 6.47 (dd, ${}^{4}J_{HH} = 1.3$ Hz, ${}^{3}J_{HH} = 7.8$ Hz, 1H, arom- H_3), 4.21 (br s, 1H, SeCHH), 3.52 (d, ${}^{2}J_{HH} = 13.0$ Hz, 1H, ArCHHN), 2.65 (d, ${}^{2}J_{HH} = 13.0$ Hz, 1H, ArCHHN), 2.21 (overlapping m, 4H, SeCHH + NC H_3), 1.61 (s, 3H, NC H_3), 0.25 (s, 18H, SiC H_3) ppm.

Figure S7. ¹H NMR spectrum of complex **5**

¹H NMR (THF- d_8 , 500.1 MHz, 298 K): δ = 7.56 (d, ³ J_{HH} = 8.3 Hz, 1H, arom- H_6), 7.22-7.27 (m, 3H, arom- H_3 + arom- H_4 + arom- H_5), 3.67 (s, 2H, ArC H_2 N), 3.32 (s, 2H, SeC H_2), 2.34 (s, 6H, NC H_3), 1.35 (s, 6H, C(C H_3)₂O) ppm.

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): $\delta = 7.89$ (d, 1H, ${}^{3}J_{HH} = 8.7$ Hz, arom- H_6), 7.16 (m, 1H, arom- H_3), 7.09 (t, 1H, ${}^{3}J_{HH} = 7.7$ Hz, arom- H_4), 7.02 (t, 1H, ${}^{3}J_{HH} = 7.3$ Hz, arom- H_5), 3.45 (s, 2H, ArC H_2 N), 3.20 (s, 2H, SeC H_2), 2.10 (s, 6H, N(C H_3)₂), 1.53 (s, 6H, C(C H_3)₂O), 0.36 (s, 18H, SiC H_3) ppm.

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): δ = 7.26 (br m, 1H, arom- H_6), 6.86 (t, ${}^{3}J_{HH}$ = 7.60 Hz, 1H, arom- H_5), 6.75 (t, ${}^{3}J_{HH}$ = 7.7 Hz, 1H, arom- H_4), 6.49 (d, ${}^{3}J_{HH}$ = 7.4 Hz, 1H, arom- H_3), 4.11 (br m, 1H, SeCH*H*), 3.46 (d, ${}^{2}J_{HH}$ = 13.5 Hz, 2H, ArC H_2 N), 2.56 (br m, 1H SeC*H*H), 2.22 (s, 3H, NC H_3), 1.63 (s, 3H, NC H_3), 0.44 (br, 18H, SiC H_3) ppm.

¹H NMR (THF-*d*₈, 400.1 MHz, 298 K): *δ* = 7.68 (br, 1H, arom-*H*₆), 7.39 (br, 1H, arom-*H*₃), 7.23 (overlapping m, 2H, arom-*H*₄ + arom-*H*₅), 3.96 (s, 2H, ArC*H*₂N), 3.08 (s, 2H, SeC*H*₂), 2.46 (br s, 6H, NC*H*₃), 1.27 (s, 6H, C(C*H*₃)₂O) ppm.

¹H NMR (benzene- d_6 , 500.1 MHz, 298 K): δ = 7.43 (br., s, 2H, arom- H_6), 6.84 (overlapping m, 6H, arom- H_3 + arom- H_5 + arom- H_4), 3.36 (br s, 4H, SC H_2), 3.24 (br s, 4H, ArC H_2 N), 2.06 (br s, 12H, NC H_3) ppm.

Figure S12. ¹H NMR spectrum of complex **10**

¹H NMR (benzene- d_6 , 400.1 MHz, 298 K): $\delta = 7.47$ (br, 1H, arom- H_6), 6.92 (overlapping m, 4H, $o-C_6H_5 + m-C_6H_5$), 6.85 (overlapping m, 2H, arom- H_4 + arom- H_5), 6.72 (overlapping m, 2H, arom- $H_3 + p-C_6H_5$), 3.34 (s, 2H, ArC H_2 N), 3.26 (s, 2H, SC H_2), 1.89 (s, 6H, NC H_3) ppm.

¹H NMR (benzene- d_6 , 400.1 MHz, 298 K): $\delta = 7.63$ (d, ${}^{3}J_{HH} = 7.7$ Hz, 1H, arom- CH_6), 6.91 (overlapping m, 4H, o- $C_6H_5 + m$ - C_6H_5), 6.86 (overlapping m, 2H, arom- H_4 + arom- H_5), 6.83 (d, ${}^{3}J_{HH} = 7.1$ Hz, 1H, arom- H_3), 6.69 (m, 1H, p- C_6H_5), 3.26 (s, 2H, ArC H_2 N), 3.16 (s, 2H, SeC H_2), 1.84 (s, 6H, NC H_3) ppm. Peak at 1.55 ppm = residual rinsing acetone.

Figure S14. ¹H VT NMR for complex **4**

¹H VT NMR (toluene- d_8 , 400.1 MHz) for [{L^{Se,(CF3)2}}CdN(SiMe_3)₂] (4).

¹⁹F VT NMR (toluene- d_8 , 376.2 MHz) for [{L^{Se,(CF3)2}}CdN(SiMe_3)₂] (4).

Figure S16. Diffusion – molecular weight analysis for complex 2

Diffusion-molecular weight analysis for $[\{L^{Se,(CH3)2}\}CdN(SiMe_3)_2]_2$ in benzene- d_6 at 293 K. Calibrants: benzene, pyridine, toluene, naphthalene, pyrene, tetrakis(trimethylsilyl)silane (resp. 78.1, 79.1, 92.1, 128.1, 202.1 and 320.8 g·mol⁻¹).

Figure S17. Synthesis and ¹H NMR spectrum of $[{L^{S,(CH3)2}}HgPh]$ (12).

[PhHgN(SiMe₃)₂] (0.46 g, 1.04 mmol) was dissolved in THF (10 mL), and a solution of $\{L^{S,(CH3)2}\}$ H (0.25 g, 1.04 mmol) in THF (15 mL) was added dropwise at room temperature. The reaction mixture was stirred overnight at room temperature, and the solvent was removed under vacuum. Compound **12** was obtained as an oily material upon washing with *n*-hexane (3×5 mL). Yield 0.29 g (55%). ¹H NMR (THF-*d*₈, 400.1 MHz, 298 K): δ = 7.50 (br, 1H, arom-C₆*H*), 7.39 (d, ³*J*_{HH} = 7.7 Hz, 1H, arom-C₃*H*), 7.32 (m, 2H, arom-C₄*H* + arom-C₅*H*), 7.19 (m, 2H, *o*-C₆*H*₅), 7.10 (overlapping m, 3H, *m*-C₆*H*₅ + *p*-C₆*H*₅), 3.52 (s, 2H, ArC*H*₂N), 3.03 (s, 2H, SC*H*₂), 2.19 (s, 6H, NC*H*₃), 1.19 (s, 6H, C(C*H*₃)₂O) ppm. ¹³C{¹H} NMR (THF-*d*₈, 100.6 MHz, 298 K): δ = 140.13 (arom-*C*₁), 138.69 (arom-*C*₂), 138.18 (arom-*C*₃), 132.71 (*i*-C₆H₅), 131.06 (arom-*C*₆), 129.23 (arom-*C*₅), 129.02 (arom-*C*₄), 128.86 (*p*-C₆H₅), 128.41 (*o*-C₆H₅), 126.68 (*m*-C₆H₅), 70.88 (*C*(CH₃)₂O), 63.22 (ArCH₂N), 51.17 (SCH₂), 45.46 (NCH₃), 29.71 (C(CH₃)₂O) ppm. ¹⁹⁹Hg{¹H} NMR (THF-*d*₈, 71.6 MHz, 298 K): δ = -801 ppm.

¹H NMR of [{L^{S,(CH3)2}}HgPh] (**12**) (THF-*d*₈, 400.1 MHz, 298 K)

Figure S18. Synthesis and ¹H NMR spectrum of $[{L^{Se,(CH3)2}}HgPh]$ (13).

Following the protocol given for **12**, [PhHgN(SiMe₃)₂] (0.25 g, 0.57 mmol) was reacted with {L^{Se,(CH3)2}}H (0.16 g, 0.57 mmol) to give **13** which was isolated as an oily material (0.15 g, 48%). ¹H NMR (THF-*d*₈, 400.1 MHz, 298 K): $\delta = 7.70$ (br, 1H, arom-C₆*H*), 7.23 (br, 1H, arom-C₃*H*), 7.18 (overlapping m, 4H, arom-C₄*H* + arom-C₅*H* + *o*-C₆*H*₅), 7.11 (overlapping m, 3H, *m*-C₆*H*₅ + *p*-C₆*H*₅), 3.45 (s, 2H, ArC*H*₂N), 3.08 (s, 2H, SeC*H*₂), 2.12 (s, 6H, NC*H*₃), 1.31 (s, 6H, C(C*H*₃)₂O) ppm. ¹³C{¹H} NMR (THF-*d*₈, 100.6 MHz, 298 K): $\delta = 141.32$ (arom-*C*₁), 138.70 (arom-*C*₂), 138.17 (arom-*C*₃), 136.03 (*i*-C₆H₅), 133.85 (arom-C₆), 130.67 (arom-C₅), 129.27 (arom-C₄), 129.02 (*p*-C₆H₅), 128.81 (*o*-C₆H₅), 126.80 (*m*-C₆H₅), 70.71 (*C*(CH₃)₂O), 65.50 (ArCH₂N), 45.19 (SeCH₂), 44.95 (NCH₃), 30.25 (C(CH₃)₂O) ppm. ⁷⁷Se{¹H} NMR (THF-*d*₈, 76.3 MHz, 298 K) : $\delta = +202$ ppm. ¹⁹⁹Hg{¹H} NMR (THF-*d*₈, 71.6 MHz, 298 K): $\delta = -798$ ppm. Anal. Calcd. for C₁₉H₂₅HgNOSe (562.97 g mol⁻¹): C 40.5; H 4.5; N 2.5. Found: C 40.1, H 4.7, N 2.7 %.

¹H NMR of [{L^{Se,(CH3)2}}HgPh] (**13**) (THF-*d*₈, 400.1 MHz, 298 K)

	1	2	3
Empirical formula	C ₁₉ H ₃₈ CdN ₂ OSSi ₂	C ₃₈ H ₇₆ Cd ₂ N ₄ O ₂ Se ₂ Si ₄	C ₁₉ H ₃₂ CdF ₆ N ₂ OSSi ₂
Formula weight (g/mol)	511.15	1116.13	619.11
Temperature	150(2) K	150(2) K	150(2) K
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a [Å]	9.1973(4)	9.2472(9)	a = 9.9892(3)
<i>b</i> [Å]	12.6308(4)	12.5669(10)	b = 10.8280(3)
<i>c</i> [Å]	13.1425(5)	13.1946(14)	c = 13.9517(4)
α [°]	71.180(2)	71.041(4)	$\alpha = 92.8170(10)$
β[°]	70.430(2)	70.219(4)	$\beta = 90.0630(10)$
γ [°]	69.4360(10)	69.424(4)	$\gamma = 97.4510(10)$
Volume	1310.05(9) Å ³	1313.4(2) Å ³	1494.47(7) Å ³
Z	2	1	2
Density (calculated)	1.296 g/cm ³	1.411 g/cm ³	1.376 g/cm ³
Absorption coefficient	1.015 mm ⁻¹	2.318 mm ⁻¹	0.930 mm ⁻¹
F(000)	380	568	628
Crystal size	$0.6 \times 0.27 \times 0.19$	0.3 imes 0.15 imes 0.1	$0.56 \times 0.48 \times 0.37$
θ range for data collection	3.3 to 27.48 °	3.29 to 27.48 °	2.92 to 27.45 °
Index ranges	-11 < h < 11	-12 < h < 12	-10 < h < 12
	-12 < k < 16	-15 < k < 16	-14 < k < 13
	-15 < 1 < 17	-17 < 1 < 17	-18 < 1 < 18
Reflections	18315 / 5938	16970 / 5927	20065 / 6712
collected/unique	[R(int) = 0.0356]	[R(int) = 0.0631]	[R(int) = 0.0254]
Completeness to θ max.	99%	98.5%	98.3%
Absorption correction	multi-scan		
Refinement method	Full-matrix least-squares on F ²		
Data / restrains /	5938 / 0 / 245	5927 / 0 / 245	6712 / 0 / 297
parameters			
Goodness-of-fit on F ² -S	1.034	1.018	1.043
Final R indices	R1 = 0.033	R1 = 0.037	R1 = 0.0259
[I>2sigma(I)]	wR2 = 0.0651	wR2 = 0.0796	wR2 = 0.0667
R indices (all data)	R1 = 0.0403	R1 = 0.0498	R1 = 0.0305
	wR2 = 0.0679	wR2 = 0.0863	wR2 = 0.0688
Largest diff. peak and hole	0.878 and -0.467e/Å ³	0.483 and -0.391 e/Å ³	0.924 and -0.324 e/Å ³

Table S1.Crystallographic data for compounds 1-3

	4	6	7
Empirical formula	C ₁₉ H ₃₂ CdF ₆ N ₂ OSeSi ₂	C ₁₉ H ₃₈ N ₂ OSeSi ₂ Zn	$C_{19}H_{32}F_6N_2OSeSi_2Zn$
Formula weight (g/mol)	666.01	511.02	618.97
Temperature	150(2) K	150(2) K	150(2) K
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1
a [Å]	9.9777(6)	9.1925(6)	a = 9.8542(5)
b [Å]	10.8108(7)	12.6472(8)	b = 10.5091(5)
	13.9716(9)	12.9189(10)	c = 14.1922(7)
α [°]	92.875(3)	96.460(4)	$\alpha = 93.228(2)$
β[°]	90.825(3)	109.961(3)	$\beta = 90.915(2)$
γ [°]	98.109(2)	111.277(3)	$\gamma = 97.033(2)$
Volume	1489.78(16) Å ³	1266.67(15) Å ³	1455.97(12) Å ³
Z	2	2	2
Density (calculated)	1.485 g/cm^3	1.34 g/cm ³	1.412 g/cm ³
Absorption coefficient	2.085 mm ⁻¹	2.511 mm ⁻¹	2.227 mm ⁻¹
F(000)	664	532	628
Crystal size (mm)	$0.57 \times 0.29 \times 0.24$	$0.6 \times 0.59 \times 0.5$	$0.35 \times 0.26 \times 0.17$
Theta range for data	2.92 to 27.55°	3.33 to 27.48°	3.006 to 27.524 °
collection			
Index ranges	-11 < h < 12	-11 < h < 11	-12 < h < 12
	-14 < k < 13	-16 < k < 16	-13 < k < 13
	-18 < l < 15	-14 < l < 16	-18 < l < 18
Reflections	13325 / 6730	13325 / 5722	24953 / 6586
collected/unique	[R(int) = 0.0368]	[R(int) = 0.0281]	[R(int) = 0.0245]
Completeness to theta	97.9%	98.5%	97.9%
max.			
Absorption correction		multi-scan	
Refinement method	F	ull-matrix least-squares or	n F^2
Data / restrains /	6730 / 0 / 297	5722 / 0 / 245	6586 / 0 / 297
parameters			
Goodness-of-fit on F ² -S	0.932	1.039	1.084
Final R indices	R1 = 0.0369	R1 = 0.0336	R1 = 0.0194
[I>2sigma(I)]	wR2 = 0.0764	wR2 = 0.0838	wR2 = 0.0601
R indices (all data)	R1 = 0.0558	R1 = 0.0465	R1 = 0.0214
	wR2 = 0.0812	wR2 = 0.0897	wR2 = 0.0608
Largest diff. peak and hole	$0.582 \text{ and } -0.49 \text{ e/Å}^3$	1.418 and -0.551 e/Å ³	$0.420 \text{ and } -0.215 \text{e}/\text{Å}^3$

Table S2.Crystallographic data for compounds 4, 6 and 7

	0	10
Empirical formula	C H E Han O S	C1 H E HaNOS
Empirical formula Formula weight (g/mol)	$C_{26} 11_{28} 1_{12} 11_{2} 10_{2} C_{2} C_{2$	624 00
Tomporaturo	695.21 150(2) V	204(2) V
$W_{\text{ovelongth}}(\hat{\lambda})$	130(2) K 0 71072	294(2) K 0.71072
Crustel system	U./10/5 Trialinia	U./10/5 Trialinia
Crystal system		
space group	P-1	P-1 5 5044(10)
a[A]	10.0123(3)	5.5944(19)
	10.4618(3)	85.854(6)
	15./0/4(3)	1/.803(6)
α [°]	91.4/89(9)	74.157(6)
β [°]	96.5048(9)	85.854(6)
γ[°]	109.0432(10)	78.605(5)
Volume	1541.82(7) A ³	$1266.67(15) A^3$
Z	2	2
Density (calculated)	1.924 g/cm^3	1.986 g/cm^3
Absorption coefficient	5.228 mm ⁻¹	7.536 mm ⁻¹
F(000)	868	596
Crystal size (mm)	0.37 imes 0.32 imes 0.11	0.23 imes 0.19 imes 0.17
Theta range for data collection	3.18 to 27.48 °	1.189 to 24.999 °
Index ranges	-12 < h < 12	-6 < h < 6
-	-13 < k < 13	-13 < k < 13
	-20 < l < 16	-21 < 1 < 21
Reflections collected/unique	23655 / 7026	10061 / 3670
*	[R(int) = 0.0348]	[R(int) = 0.0911]
Completeness to theta max.	99.4%	99.7%
Absorption correction	multi-scan	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restrains / parameters	7026 / 0 / 410	3670 / 0 / 264
Goodness-of-fit on F ² -S	0.881	0.924
Final R indices [I>2sigma(I)]	R1 = 0.0215	$R_1 = 0.0528$
	wR2 = 0.0549	wR2 = 0.0699
R indices (all data)	R1 = 0.0241	$R_1 = 0.0907$
	wR2 = 0.0564	wR2 = 0.0800
Largest diff. peak and hole	$1.103 \text{ and } -0.773 \text{e}/\text{Å}^3$	$0.830 \text{ and } -1.245 \text{ e/Å}^3$

Table S3.Crystallographic data for compounds 9-10