Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Base assisted C-C coupling between carbonyl and polypyridyl ligands in Ru-NADH type carbonyl complex

Debashis Ghosh,^a Takashi Fukushima,^a Katsuaki Kobayashi,^a Susan Sen,^b Susumu Kitagawa,^c Tatsuhisa kato^d and Koji Tanaka^{*a}

Table S1. Treatment of different bases on [1·HH]^a

Entry	Base	Amount of base (equiv.)	Product
1	Et ₃ N	6	No product
2	DABCO	6	No product
3	Proton sponge	6	No product
4	PhCOONBu ₄	3	Base adduct
5	DBN	3	New five membered metallacycle

^aAll the reactions were carried out with $2mM [1.HH](PF_6)_2$ in 5 mL CH₃CN.

Figure S1. UV changes of the $[Ru(tpy)(pbn)(CO)]^{2+}$ complex (1) after addition of various amount of Na₂S₂O₄.

Figure S2. UV changes of the $[Ru(tpy)(pbn)(CO)]^{2+}$ complex (1) after irradiation with light ($\lambda > 420$ nm) in CH₃CN:TEOA = 99:1 observed in a) 45 sec and b) 7200 sec.

Figure S3. ¹H NMR spectral changes after addition of PhCOONBu₄ (red) to $[Ru(tpy)(pbnHH)(CO)]^{2+}$ complex [**1.HH**] (blue).

Figure S4. Visual colour changes of [1.HH] after addition of DBN followed by O₂.

Figure S5. ¹H NMR spectrum of (a) the reaction mixture after addition of DBN (3 equiv. with respect to [1.HH]) to [1.HH] followed by DDQ (2 equiv. with respect to [1.HH]) under argon atmosphere; (b) pure complex 2.

Figure S6. ¹³C NMR spectrum of (a) the reaction mixture after addition of DBN (3 equiv. with respect to [1.HH]) to [1.HH] followed by DDQ (2 equiv. with respect to [1.HH]) under argon atmosphere; (b) pure complex 2. Inset is the ¹³C NMR spectrum of pure DBN.

Figure S7. a) Observed ESI-MS spectrum of the metallacycle 2 obtained by the reaction of $[Ru(tpy)(pbnHH)(CO)]^{2+}$ with DBN base in CH₃CN under air; b) Calculated one.

Figure S8: Cyclic voltammograms (CV) of $[Ru(tpy)(pbn)(CO)]^{2+}$ (1) in the absence (a) and presence (b) of 5 equiv. of AcOH, 1mM in Ar-purged CH₃CN with 0.1 MBu₄NPF₆ as the supporting electrolyte at a scan rate v = 50 mVs⁻¹. The curves in the CV were assigned by comparing with literature data.^{1,2,3} In the absence of proton (a), 1 undergoes successive one electron reduction by [pbn]/[pbn⁻] and [tpy]/[tpy⁻] redox couples. However, in the presence of proton (b), two electron reduction occurs at the pbn moiety of 1 to form [Ru(tpy)(pbnHH)(CO)]²⁺ [1.HH].^{1,2}

Figure S9. EPR spectrum obtained upon the addition of 3.0 equiv. of DBN to a CH_3CN solution of [**1.HH**] (1 mM) at 5 K.

Figure S10. EPR spectrum obtained upon the addition of 3.0 equiv. of DBN to a CH_2Cl_2 solution of [**1.HH**] (0.5 mM) at 5 K.

Figure S11. a) Observed ESI-MS spectrum of the Ru-OCO-bridge complex 3 obtained by the reaction of metallacycle 2 with 10 equiv. of NH₄PF₆ in H₂O/CH₃CN (1:1 v/v) under air; b) ESI-MS spectrum obtained by the reaction of metallacycle 2 with 10 equiv. of NH₄PF₆ in H₂O¹⁸/CH₃CN (1:1 v/v) in presence of molecular oxygen; c) calculated one.

Figure S12. a) Observed ESI-MS spectrum of the Ru-O¹⁸CO-bridge complex **3** obtained by the reaction of metallacycle **2** with 10 equiv. of NH₄PF₆ in H₂O¹⁸/CH₃CN (1:1 v/v) in presence of DDQ; c) calculated one.

Figure S13. ¹H NMR spectra of (a) $[Ru(tpy)(pbn)(CO)]^{2+}$ and (b) $[Ru(tpy)(pbnHH)(CO)]^{2+}$ in CD₃CN.

Figure S14. ¹³C NMR spectra of (a) $[Ru(tpy)(pbn)(CO)]^{2+}$ and (b) $[Ru(tpy)(pbnHH)(CO)]^{2+}$ in CD₃CN.

Figure S15. FT-IR spectra of (a) [Ru(tpy)(pbn)(CO)](PF₆)₂ (1) and (b) [Ru(tpy)(pbnHH)(CO)] (PF₆)₂ [1.**HH**].

Figure S16. ¹H NMR spectrum of Ru-CO-bridge metallacycle **2** in CD₃CN.

Figure S17. ¹³C NMR spectrum of Ru-CO-bridge metallacycle 2 in CD₃CN.

Figure S18. ¹H NMR spectrum of Ru-OCO-bridge complex **3** in CD₃CN.

Figure S19. ¹H NMR spectrum of Ru-OCO-bridge complex **3** in CD₃CN.

Figure S20. FT-IR spectra of (a) metallacycle complex 2; (b) complex 3 and (c) complex 1.

References

- D. E. Polyansky, D. Cabelli, J. T. Muckerman, T. Fukushima, K. Tanaka, and E. Fujita, *Inorg. Chem.*, 2008, 47, 3958.
- 2. T. Fukushima, T. Wada, H. Ohtsu and K. Tanaka, *Dalton Trans.*, 2010, **39**, 11526.
- 3. H. Nagao, T. Mizukawa and K. Tanaka, *Inorg. Chem.*, 1994, **33**, 3415.