Gold setting the "gold standard" among transition metals as a hydrogen bond acceptor - a theoretical investigation

Ferdinand Groenewald, Helgard G. Raubenheimer, Jan Dillen and Catharine Esterhuysen*

Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa. E-mail: ce@sun.ac.za

Supplementary Information

<u>S1. MP2/aug-cc-pVTZ-pp optimised coordinates</u>

AuHF					
Low Frequ	encies				
183.6831	768.3	354	768.3354		
Optimised	Coordinates				
79	0.184715	0.013922	0.019300		
1	2.270255	0.013935	0.019640		
9	3.248299	0.013941	0.019800		

Au⁻...HCN

S1.1 Auride adducts

Low Frequencies				
126.0092	156.	6463	156.6463	
Optimised (Coordinates			
79	0.000000	-0.000031	0.571791	
6	0.000000	-0.000031	-2.757853	
1	0.000000	-0.000031	-1.638434	
7	0.000000	-0.000031	-3.930035	

Au-...HCCH

Low Freque	encies		
96.9233	127.15	68	596.6260
Optimised O	Coordinates		
79	-0.815883	0.786665	1.668184
1	-1.106465	2.278990	-3.943945
6	-1.053513	2.006769	-2.920156
6	-0.992668	1.693943	-1.743656
1	-0.938118	1.413657	-0.689567

Au⁻...H₂O

Low Frequencies

142.1404	301.1	1336	669.8565
Optimised	Coordinates		
79	0.275048	0.007905	-0.000008
8	-2.979601	-0.090066	0.000091
1	-2.955495	0.872488	-0.000034
1	-2.004786	-0.276369	0.000089

Au⁻...NH₃

Low Frequencies

107.8151	217.2294		285.9152	
Optimised Coordinates				
79	0.051853	-0.118827	-0.070662	
1	2.518381	0.232582	0.245212	
7	3.543139	0.139095	0.181590	
1	3.722648	0.183149	-0.817146	
1	3.707501	-0.831859	0.430326	

Au⁻...CH₄

Low Frequencies					
69.3979	132.92	132.9266			
Optimised Coordinates					
79	0.747751	0.052756	-0.188748		
1	-3.688179	0.356377	0.211831		
1	-2.077834	-0.407227	0.183937		
1	-3.323872	-0.980593	1.322156		
1	-3.502656	-1.294035	-0.416469		
6	-3.146142	-0.581038	0.325090		

S1.2 DMA adducts

DMA...HF

Low Frequencies

33.0919	39.09	34	69.0696		
Optimised Coordinates					
79	0.460119	-0.001305	-0.089349		
9	-2.190306	-0.604629	-1.724846		
1	-1.430672	-0.393843	-1.188055		
6	-1.069980	0.800582	1.033813		
1	-1.624070	1.581867	0.500770		
1	-1.801926	0.049444	1.352562		
1	-0.659665	1.258268	1.942887		
6	2.024900	-0.785831	-1.174069		
1	2.985725	-0.616527	-0.671261		
1	1.921260	-1.867991	-1.316105		
1	2.098034	-0.334160	-2.170377		

DMA...HCN

40.1586	44.79	52	114.1498
Optimised	Coordinates		
79	0.571796	0.099229	-0.205159
6	-1.052396	0.934144	0.758932
1	-1.669169	1.552075	0.093486
1	-1.716523	0.180439	1.201572
1	-0.721480	1.584213	1.577756
6	2.216232	-0.710765	-1.137536
1	2.217731	-1.806248	-1.089246
1	2.265194	-0.434189	-2.197501
1	3.148150	-0.366720	-0.671684
1	-1.505841	-0.595987	-1.154484
6	-2.389765	-0.980458	-1.668164
7	-3.331054	-1.396765	-2.223703

DMA...HCCH

Low Frequencies

35.7433	38.374	43	90.0012			
Optimised	Optimised Coordinates					
79	-0.494103	-0.444217	1.217161			
6	-2.109954	0.125946	2.357122			
1	-2.666300	0.950991	1.895081			
1	-2.819140	-0.698294	2.503350			
1	-1.801075	0.465077	3.354274			
6	1.140952	-1.010005	0.093716			
1	2.070777	-0.885670	0.663010			
1	1.094080	-2.062742	-0.213992			
1	1.246242	-0.414549	-0.822520			
1	-2.398411	-2.237459	-4.099673			
6	-2.006601	-1.927116	-3.164257			
6	-1.555076	-1.571658	-2.092158			
1	-1.160078	-1.255196	-1.139413			

DMA...H₂O

38.6797	50.07:	53	120.8610
Optimised	Coordinates		
79	0.457495	-0.135181	0.042064
8	-2.257853	0.055873	-1.922496
1	-2.599538	0.415579	-1.096275
1	-1.339437	-0.131106	-1.649456
6	-1.080437	0.669585	1.158008
1	-1.935035	-0.015680	1.238799
1	-0.762633	0.895812	2.183562
1	-1.452825	1.610419	0.730676
6	1.997888	-0.936066	-1.059189
1	2.913900	-1.021395	-0.460764
1	1.760030	-1.941143	-1.428312
1	2.241218	-0.320557	-1.933802

DMA...NH₃

Low Frequencies

35.0669	39.10	77	60.4697
Optimised	Coordinates		
79	-1.130190	0.426622	-0.129015
1	1.378464	-0.228064	0.251839
7	2.284389	-0.670080	0.077494
1	2.650082	-0.186606	-0.735820
1	2.033366	-1.596417	-0.252576
6	-1.120387	-1.635323	-0.112289
1	-0.644995	-2.046793	-1.012699
1	-0.578122	-2.040128	0.752373
1	-2.136528	-2.047870	-0.071795
6	-1.144844	2.484485	-0.150158
1	-0.626362	2.907487	0.719395
1	-0.654807	2.889334	-1.044802
1	-2.168241	2.881053	-0.137988

DMA...CH₄

9.8688	31.2930	0 3	1.9996
Optimised	l Coordinates		
79	-1.335053	-0.004985	-0.086025
6	-2.004361	-1.949380	0.020872
1	-1.644238	-2.553249	-0.822113
1	-1.668374	-2.448116	0.939209
1	-3.100748	-2.004145	0.009118
6	-0.666206	1.941731	-0.193070
1	-0.063219	2.216462	0.682506
1	-0.039134	2.111340	-1.078348
1	-1.497228	2.656889	-0.247131
6	2.666308	0.146601	-0.035144
1	1.578437	0.094216	-0.048074
1	3.042746	-0.274226	0.894962
1	2.975399	1.186526	-0.113482
1	3.070727	-0.415991	-0.874093

S1.3 Ag(I) and Cu(I) adducts

[(Me)₂Ag]⁻...HF

Low Frequencies

19.0164	74.3421	121.6073

Optimised Coordinates

47	0.154344	0.126585	0.075657
9	-1.029039	-1.263591	-2.665216
1	-0.419577	-0.964183	-1.998342
6	-1.067828	1.063288	1.486324
1	-1.621286	1.899889	1.045382
1	-1.806147	0.368530	1.902069
1	-0.488519	1.463397	2.326543
6	1.507432	-0.785620	-1.262957
1	2.464025	-0.616289	-0.753667
1	1.417550	-1.868465	-1.401770
1	1.602461	-0.337669	-2.258050

[(Me)₂Cu]⁻...HF

5.7437	73.896	5 115.5530		
Optimised	Coordinates			
29	0.053192	0.224685	0.238291	
6	-0.907266	1.114131	1.609249	
1	-1.472207	1.976572	1.229486	
1	-1.637306	0.456062	2.100352	
1	-0.250038	1.497354	2.402957	
6	1.139976	-0.641095	-1.065989	
1	2.151285	-0.519012	-0.647580	
1	1.001908	-1.721150	-1.204978	
1	1.175886	-0.198793	-2.069970	
9	-1.548653	-1.002050	-2.235786	
1	-0.881921	-0.724261	-1.614757	

S1.4 Adducts with omission of relativistic effects on Au

Note that for Au the aug-cc-pVTZ-pp basis set and pseudopotential are replaced by the ECP60MHF basis set and ECP.

Au-...HF

Low Frequencies

118.5247	595.4	115	595.4116
Optimised C	Coordinates		
79	-0.099591	0.001885	0.001450
1	2.342488	0.001852	0.000362
9	3.297461	0.001840	-0.000064

DMA...HF

72.2363	3 112.2464		
Coordinates			
0.123836	0.105287	0.115525	
-1.140439	1.121423	1.590331	
-2.148477	1.287119	1.197918	
-1.237266	0.533929	2.509010	
-0.730099	2.098022	1.866816	
1.527076	-0.907272	-1.274929	
2.451855	-0.872734	-0.688641	
1.339570	-1.962540	-1.496880	
1.742213	-0.405881	-2.223788	
-0.899761	-1.048635	-2.919107	
-0.320076	-0.857857	-2.190255	
	72.2363 Coordinates 0.123836 -1.140439 -2.148477 -1.237266 -0.730099 1.527076 2.451855 1.339570 1.742213 -0.899761 -0.320076	72.2363 1 Coordinates 0.123836 0.105287 -1.140439 1.121423 -2.148477 1.287119 -1.237266 0.533929 -0.730099 2.098022 1.527076 -0.907272 2.451855 -0.872734 1.339570 -1.962540 1.742213 -0.405881 -0.899761 -1.048635 -0.320076 -0.857857	

S2. Interaction energies

Method	H-Donor	E _{INT} (kcal/mol)	$d(\mathrm{Au}\cdots\mathrm{H})(\mathrm{\AA})$	Au…H-X (deg)	H-X (Å)
B3LYP	HF	-19.96	2.16	180.0	0.98
TPSS		-23.24	2.06	180.0	1.00
MP2*		-19.89	2.15	180.0	0.96
MP2		-23.41	2.09	180.0	0.98
B3LYP	HCN	-16.52	2.36	180.0	1.11
TPSS		-18.93	2.22	180.0	1.13
MP2*		-19.55	2.25	180.0	1.11
MP2		-21.59	2.21	180.0	2.21
B3LYP	НССН	-6.24	2.67	180.0	1.08
TPSS		-7.58	2.50	180.0	1.10
MP2*		-9.10	2.49	180.0	1.09
MP2		-10.30	2.44	180.0	1.09
B3LYP	H ₂ O	-11.63	2.40	161.9	0.99
TPSS		-13.15	2.29	165.1	1.01
MP2*		-12.97	2.37	161.7	0.98
MP2		-15.09	2.30	162.1	0.99
B3LYP	NH ₃	-6.03	2.69	161.8	1.03
TPSS		-7.07	2.53	164.1	1.04
MP2*		-7.63	2.58	163.9	1.03
MP2		-8.86	2.51	162.9	1.03
B3LYP	CH ₄	-1.18	3.22	179.9	1.09
TPSS		-1.65	3.04	180.0	1.10
MP2*		-2.47	2.93	180.0	1.09
MP2		-2.93	2.89	180.0	1.09

Table S1 – The interaction energies (E_{INT}) in kcal/mol, intermolecular distance [$d(Au \cdots H)$] in Å, bonding angle ($Au \cdots H-X$) in degrees and the H-X distance in Å for the optimised geometries of the H-Bonded Au^- anion at four different levels of theory.

Table S2 – The E _{INT} values in kcal/mol, Au-CH ₃ and H-X bond lengths and intermolecular distances in Å and bonding angles
(°) of DMA H-Bonded to HF, HCN, HCCH, H ₂ O, NH ₃ and CH ₄ .

Method	H-Donor	E _{INT} (kcal/mol)	Au-CH ₃ (Å)	$d(\mathrm{Au}\cdots\mathrm{H})(\mathrm{\AA})$	Au…H - X (°)	H-X (Å)
B3LYP	HF	-15.32	2.117	2.205	179.9	0.960
TPSS		-17.34	2.111	2.124	179.9	0.979
MP2*		-14.58	2.060	2.260	175.2	0.945
MP2		-16.00	2.061	2.222	174.4	0.954
B3LYP	HCN	-13.57	2.115	2.437	174.1	1.094
TPSS		-14.79	2.110	2.299	177.4	1.111
MP2*		-15.95	2.065	2.407	173.4	1.090
MP2		-16.17	2.065	2.388	173.5	1.092
B3LYP	НССН	-5.05	2.717	2.117	174.2	1.077
TPSS		-5.76	2.580	2.111	176.2	1.086
MP2*		-6.99	2.611	2.062	173.2	1.078
MP2		-7.48	2.580	2.063	173.5	1.079
B3LYP	H ₂ O	-9.50	2.123	2.510	154.7	0.977
TPSS	-	-10.48	2.116	2.374	159.5	0.992
MP2*		-10.51	2.063	2.529	149.7	0.971

MP2		-11.52	2.064	2.468	151.3	0.976
B3LYP	NH3	-4.81	2.120	2.729	160.0	1.023
TPSS		-5.45	2.112	2.596	162.4	1.033
MP2*		-4.61	2.061	2.677	160.1	1.021
MP2		-6.89	2.062	2.621	158.6	1.023
B3LYP	CH ₄	-0.90	2.119	3.184	179.5	1.089
TPSS		-1.21	2.111	3.087	179.2	1.094
MP2*		-2.05	2.060	2.983	178.8	1.088
MP2		-2.40	2.061	2.915	179.2	1.089

Table S3 – E_{INT} values in kcal/mol for Au⁻ and DMA H-Bonded to HF, HCN, HCCH, H₂O, NH₃ and CH₄ optimised at the B3LYP/ aug-cc-pVTZ-pp level of theory in H₂O modelled as a continuum solvent.

H-Donor	E_{INT} (kcal/mol) with Au ⁻	E _{INT} (kcal/mol) with DMA
HF	-12.34	-8.02
HCN	-3.88	-2.50
H ₂ O	-5.08	-2.93
НССН	-1.88	-0.81
NH ₃	-2.04	-0.79
CH ₄	-0.83	-0.03

Table S4 - The interaction energy (E_{INT}), intermolecular distance ($M \cdots H$ and $H \cdots CH_3$) and H-F bond length in Å as comparison of M = Au(I), Cu(I) and Ag(I) dimethyl analogues at the MP2/aug-cc-pVTZ-pp level of theory.

	E _{INT} (kcal/mol)	$d(\mathbf{M}^{\cdot\cdot\cdot}\mathbf{H})$ (Å)	$d(\mathrm{H}^{\cdot\cdot\cdot}\mathrm{CH}_3)$ (Å)	H-F (Å)
$[(Me)_2-Au(I)]^- \cdots H-F$	-16.00	2.222	2.548	0.954
$[(Me)_2-Ag(I)]-\cdots$ H-F	-15.66	2.413	2.070	0.952
$[(Me)_2-Cu(I)]$ -··H-F	-15.76	2.282	2.097	0.953

Table S5 – The interaction energy and three geometrical parameters of Au⁻ and DMA H-Bonded to HF when switching off relativistic effects.

AuHF	E _{INT} (kcal/mol)	$d(\mathrm{Au}\cdots\mathrm{H})(\mathrm{\AA})$	$d(\mathrm{H}^{\dots}\mathrm{CH}_3)$ (Å)	H-F (Å)
B3LYP/ ECP60MHF	-15.1	2.50		0.96
MP2/ ECP60MHF	-16.2	2.44		0.95
BP86-D3/TZP no ZORA	-17.3	2.33		0.99
DMA.HF				
B3LYP	-15.9	2.55	2.00	0.961
MP2	-15.2	2.54	2.06	0.951
BP86-D3/TZP no ZORA	-19.9	2.36	1.94	0.99

 $Figure \ S1 - Optimised \ geometry \ of \ the \ [Me_2Au]^{-} \cdots HF \ adduct \ obtained \ at \ the \ BP86-D3 \ level \ of \ theory \ without \ ZORA.$

S3. AIM and NCI parameters

Table S6 – Defined ranges for electron density $[\rho_b (ea_0^{-3})]$, the Laplacian of the electron density $[\nabla^2(\rho_b) (ea_0^{-5})]$ and the total electronic energy density $[H_b(au)]$ for vdW, H-Bond and charge transfer in hypervalent trigonal bipyramidal adducts (CT-TBP) type interactions extracted from Nakanishi *et al.*¹

Interaction type	$ \rho_b \left(ea_0^{-3}\right) $	$\nabla^2(\rho_b) \ (ea_0^{-5})$	$H_b(au)$
vdW	$0.00 < \rho_b < 0.01$	$0.00 < \nabla^2(\rho_b) < 0.04$	$0.00 < H_b < 0.002$
HB	$0.01 < \rho_b < 0.04$	$0.04 < \nabla^2(\rho_b) < 0.12$	$-0.004 < H_b < 0.002$
CT-TBP	$0.03 < \rho_b < 0.12$	$-0.01 < \nabla^2(\rho_b) < 0.1$	$-0.06 < H_b < -0.003$

Table S7 – The E_{INT} values in kcal/mol, the Au···H distances (Å), the electron density $[\rho_b (ea_0^{-3})]$, the Laplacian of the electron density $[\nabla^2(\rho_b) (ea_0^{-5})]$ and the total electronic energy density $[H_b(au)]$ of six optimised H-Bonded Au^- adducts at the MP2/aug-cc-pVTZ-pp level of theory.

H-Donor	E _{INT} (kcal/mol)	$Au \cdots H(Å)$	$\rho_b (ea_0^{-3})$	$\nabla^2(\rho_b) (ea_0^{-5})$	$H_b(au)$
HF	-23.41	2.09	0.039	0.043	-0.0117
HCN	-21.59	2.21	0.031	0.057	-0.0055
НССН	-10.30	2.44	0.019	0.045	-0.0008
H ₂ O	-15.09	2.30	0.025	0.052	-0.0031
NH ₃	-8.86	2.51	0.017	0.041	-0.0003
CH ₄	-2.93	2.89	0.009	0.022	0.0005

Figure S2 – Two dimensional contour plots for the $\nabla^2(\rho_b)$ of the H-Bonded optimised geometries in the gas phase of the auride anion with A) HF B) HCN C) HCCH D) H₂O E) NH₃ F) CH₄ at the MP2/aug-cc-pVTZ level of theory. The BCPs are shown as green spheres with the atomic interaction lines represented by the solid and dotted lines.

Figure S3 – NCI plots and two dimensional contour plots of the $\nabla^2(\rho_b)$ calculated for the auride anion H-Bonded to six H-Bond donors; A) HF, B) HCN, C) HCCH, D) H₂O, E) NH₃ and F) CH₄. The $\lambda_2 * \rho$ (au) values are indicated in the tables next to each image. Red indicates the Minimum value, yellow indicates values less than zero, green indicates zero and blue indicating the maximum and cyan greater than zero.

Table S8 – The E_{INT} values, the Au···H distance in Å, the electron density $[\rho_b (ea_0^{-3})]$, the Laplacian $[\nabla^2(\rho_b) (ea_0^{-5})]$ and the total electronic energy density [H_b (au)] of the optimised geometries of the DMA adducts at the MP2/aug-cc-pVTZ-pp level of theory.

H-Bond donor	E _{INT} (kcal/mol)	<i>d</i> (Au…H) (Å)	$ ho_b (ea_0^{-3})$	$\nabla^2(\rho_b) \ (ea_0^{-5})$	$H_b(au)$
HF	-16.00	2.22	0.028	0.048	-0.0052
HCN	-16.17	2.39	0.021	0.051	-0.0012
НССН	-7.48	2.06	0.014	0.039	0.0004
H_2O	-11.52	2.47	0.017	0.046	-0.0003
NH_3	-6.89	2.62	0.013	0.037	0.0005
CH_4	-2.40	2.92	0.008	0.022	0.0007

^a Properties of the $C \cdots H$ interaction

S4. EDA analysis

	AuHF	AuHCN	Au ⁻ .H ₂ O	AuHCCH	Au ⁻ .NH ₃	Au⁻.CH₄
Eint	-23.01	-20.42	-14.33	-9.51	-8.67	-2.87
ΔE_{elstat}	-23.63	-24.73	-15.68	-11.6	-11.23	-3.17
	(55.3%)	(56.5%)	(61.4%)	(50.7%)	(58.2%)	(40.3%)
ΔE_{Pauli}	19.72	23.33	11.19	13.37	10.63	5
ΔE_{orb}	-18.27	-17.93	-8.37	-10.03	-6.45	-3.43
	(42.7%)	(41.0%)	(32.8%)	(43.9%)	(33.4%)	(43.6%)
ΔE_{disp}	-0.84	-1.08	-1.47	-1.24	-1.62	-1.27
	(2.0%)	(2.5%)	(5.8%)	(5.4%)	(8.4%)	(16.1%)
	DMA.HF	DMA.HCN	DMA.H ₂ O	DMA.HCCH	DMA.NH ₃	DMA.CH ₄
E _{int}	-17.97	-17.18	-12.74	-8.34	-7.95	-2.98
ΔE_{elstat}	-16.32	-17.29	-12.09	-7.51	-8.03	-2.2
	(53.8%)	(56.5%)	(58.8%)	(45.2%)	(52.7%)	(31.4%)
ΔE_{Pauli}	12.35	13.43	7.82	8.27	7.31	4.02
ΔE_{orb}	-12.16	-10.88	-5.78	-6.64	-4.32	-2.53
	(40.1%)	(35.5%)	(28.1%)	(40.0%)	(28.3%)	(36.1%)
ΔE_{disp}	-1.84	-2.44	-2.68	-2.46	-2.9	-2.27
	(6.1%)	(8.0%)	(13.0%)	(14.8%)	(19.0%)	(32.4%)

Table S10 – EDA results at the BP86-D3/TZP level of theory in kcal/mol for adducts with Au⁻ and DMA.

S5. Effect of adduct formation on H-X bond

Table S11 - Elongation of the H-X bond (Å) upon H-bond formation with Au⁻ and DMA at the MP2/aug-cc-pVTZ level of theory.

	Au-	DMA
	ΔR (Å)	ΔR (Å)
HF	0.056	0.030
HCN	0.055	0.028
НССН	0.030	0.017
H ₂ O	0.031	0.015
NH ₃	0.019	0.011
CH ₄	0.005	0.003

Table S12 Unscaled calculated H–X stretching frequencies (cm⁻¹) for HF, HCN, HCCH, H₂O, NH₃ and CH₄ adducts with Au⁻¹ and [Me₂Au]⁻¹ and theoretical and experimental IR frequencies for the isolated H-bond donors at the MP2/aug-cc-pVTZ-pp level of theory.

	$Au^{-}\cdots H\text{-}X$	ОМА…Н-Х	H-X	Exp.
HF	2971.6	3444.7	4122.9	3953 ²
HCN	2682.9	3057.0	3465.7	3438.5 ³
НССН	3026.7	3226.6	3431.6	3372 ⁴
H_2O	3289.7	3604.2	3948.0	3942 ³
NH_3	3274.2	3549.1	3649.9	3577 ⁵
CH_4	3147.4	3171.5	3204.7	3252 ³

References

- 1 W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A, 2008, **112**, 13593.
- 2. M. T. Bowers, G. I. Kerley and W. H. Flygare, *J Chem. Phys.*, 1966, **45**, 3399.
- 3. C. H. Choi and M. Kertesz, J. Phys. Chem., 1996, 100, 16530.
- 4. W. F. Murphy, W. Holzer and H. J. Bernstein, *Appl. Spectrosc.*, 1969, 23, 211.
- 5. L. Fan and T. Ziegler, J. Chem. Phys., 1992, 96, 9005.