Electronic Supplementary Information (ESI)

Fig. S1 (a) XRD pattern of the Ni-Mn precursors, (b) FTIR spectra of the Ni-Mn precursors.

Fig. S2 XRD patterns of the synthesized hollow ellipsoids Ni-Mn sulfides.

Fig. S3 High-resolution TEM image of the hollow ellipsoids Ni-Mn sulfides.

Fig. S4 SEM images of the nickel sulfide (a) and manganese sulfide (b).

Fig. S5 Products obtained after sulfidation of the solid ellipsoids Ni-Mn precursors at 120 °C for different durations: (a) 30min, (b) 50 min, (c) 80 min, (d) 120 min.

Fig. S6 (a) FESEM image of hollow ellipsoids Ni-Mn sulfides and corresponding elemental mapping images: (b) Ni, (c) Mn and (d) S.

Fig. S7 (a) the N₂ adsorption-desorption isotherm and (b) pore size distribution of hollow ellipsoids Ni-Mn sulfides.

Fig. S8 CV curves of hollow ellipsoids Ni-Mn sulfides at different scan rates.

Electrode materials	Specific capacitance	References 60	
ZnO-NiO hollow spheres	497 F g ⁻¹ at 1.3 A g ⁻¹		
Co_3O_4/CeO_2 nanowire arrays	1037.5 F g $^{\text{-1}}$ at 2.0 A g $^{\text{-1}}$	61	
Hollow spiny Ni-Mn oxides	1140F g ⁻¹ at 1.0 A g ⁻¹	62	
Co-Ni-Mn oxide nanowires	554 F g ⁻¹ at 2.0 A g ⁻¹	63	
Hierarchical NiCo ₂ O ₄	816 F $g^{\text{-1}}$ at 2.0 A $g^{\text{-1}}$	64	
Mn-Ni-Co oxide nanowires	638 F g ⁻¹ at 1.0 A g ⁻¹	65	
ZnO@ZnS core-shell arrays	603.8 F g $^{-1}$ at 2.0 A g $^{-1}$	66	
ZnS-NiS ₂ hollow spheres	970 F g ⁻¹ at 2.0 A g ⁻¹	67	
$NiCo_2S_4/Co_9S_8$ hollow spindles	749 F g $^{-1}$ at 4.0 A g $^{-1}$	68	
Ni ₂ CoS ₄ nanoboxes	1200 F $g^{\text{-1}}$ at 2.0 A $g^{\text{-1}}$	69	
3D hierarchical Ni-Co sulfides	276.7 F g $^{-1}$ at 0.5 A g $^{-1}$	70	
Hedgehog-like hollow Ni-Mn sulfides	1176 F g $^{\text{-1}}$ at 2.0 A g $^{\text{-1}}$	40	
Hollow ellipsoids Ni-Mn sulfides	1636.8 F g ⁻¹ at 2.0 A g ⁻¹	This work	

Table.S1 Comparison specific capacitances of hollow ellipsoids Ni-Mn sulfides with other hybrid metal oxides/sulfides.

Fig. S9 (a) SEM image of the solid Ni-Mn sulfides, (b) CV curves at scanning rates from 5 to 100 mV s⁻¹, (c) CD curves at current densities from 0.5 to 10 A g⁻¹, (d) Specific capacitance at current densities from 0.5 to 10 A g⁻¹.

Sensing materials	Linear range (μM)	Detection limit (μM)	References
Honeycomb-like Ni@C composites	2-280	0.9	17
α -NiS hollow spheres	0.125-200	0.08	72
Lithium-doped NiO nanofibers	0.5-278	0.1	73
Copper oxide nanostructures	0.01-10	1.37	74
Reduced graphene oxide/ZnO	0.02-22.48	0.02	75
Nafion/Cu ₂ O	0.002-0.35	1.3	76
Hierarchically porous NaCoPO ₄ -Co ₃ O ₄ hollow microspheres	1.0-26	0.125	77
Hollow ellipsoids Ni-Mn sulfides	0.05-500	0.02	This work

 Table. S2 Performance comparison of the hollow ellipsoids Ni-Mn sulfides/GCE with other glucose sensors.

Fig. S10 The stability of the response current for hollow ellipsoids Ni-Mn sulfides/GCE sensors after the addition of 40 μM glucose.

Fig. S11 Curves of the adsorption extent of Congo red as a function of contact time for hollow ellipsoids Ni-Mn sulfides.

Fig. S12 IR spectra of Congo red (a), hollow ellipsoids Ni-Mn sulfides after water purification (b) and (c) hollow ellipsoids Ni-Mn sulfides.