Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supplementary Material (ESI) for the paper

Two isomorphous Co(II) coordination polymers based on new α,α -disubstituted derivatives of zoledronic acid: synthesis, structures and properties

Tomasz Rojek,^a Waldemar Goldeman,^a Katarzyna Ślepokura^b, Marek Duczmal^a, Agnieszka Wojciechowska^a and Ewa Matczak-Jon*^a

^a Department of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland. E-mail: ewa.matczak-jon@pwr.edu.pl

^b Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.

Spectroscopic characterization of compound 1 and 2:

1-hydroxy-2-(1*H*-imidazol-1-yl)-2-methylpropylidene-1,1-diphosphonic acid (compound 1): ¹H NMR (300 MHz, D₂O+NaOD) δ : 1.69 (s, 6H, 2×CH₃), 6.66 (d, ³*J*_{HH} = 0.9 Hz, 1H, imidazole-*H*), 7.19 (d, ³*J*_{HH} = 0.9 Hz, 1H, imidazole-*H*), 7.70 (d, ³*J*_{HH} = 0.9 Hz, 1H, 2-imidazole-*H*); ³¹P NMR {¹H} (121 MHz, D₂O+NaOD) δ : 17.42 (s, 2P); ¹³C NMR (75 MHz, D₂O+NaOD) δ : 26.78 (*C*H₃), 63.31 (t, ²*J*_{CP} = 5.1 Hz, (CH₃)₂*C*), 81.00 (t, ¹*J*_{CP} = 125.4 Hz, P-*C*-P), 121.23, 124.38, 138.64.

1-hydroxy-2-[1-(1*H*-imidazol-1-yl)cyclopropyl]ethylidene-1,1-diphosphonic acid (compound **2**): ¹H NMR (300 MHz, D₂O+NaOD) δ : 0.64 (m, 2H, CH₂), 1.23 (m, 2H, CH₂), 6.51 (s, 1H, imidazole-*H*), 7.28 (s, 1H, imidazole-*H*), 7.77 (s, 1H, 2-imidazole-*H*); ³¹P NMR {¹H} (121 MHz, D₂O+NaOD) δ : 17.50 (s, 2P); ¹³C NMR (75 MHz, D₂O+NaOD) δ : 11.60 (t, ³*J*_{CP} = 3.3 Hz, *C*H₂), 40.65 ((CH₂)₂*C*), 74.42 (t, ¹*J*_{CP} = 127.1 Hz, P-*C*-P), 123.57, 124.71, 141.37.

Figure S1. ¹H NMR spectrum of the compound 1.

Figure S2. ¹³C NMR spectrum of the compound 1.

Figure S3. ³¹P NMR spectrum of the compound 1.

Figure S4. ¹H NMR spectrum of the compound **2**.

Figure S5. ¹³C NMR spectrum of the compound **2**.

Figure S6. ³¹P NMR spectrum of the compound **2**.

Figure S7. Experimental X-ray powder pattern (black, T = 298 K, Cu-K α 1) and simulated powder pattern (red, T = 80 K, Mo-K α) based on the results from single-crystal X-ray diffraction for the coordination polymer **1a**.

Figure S8. Experimental X-ray powder pattern (black, T = 298 K, Cu-K α 1) and simulated powder pattern (red, T = 130 K, Mo-K α) based on the results from single-crystal X-ray diffraction for the coordination polymer **2a**.

	1	2	1a	2a
Bond lenghts				
P1O1	1.4819(8)	1.5079(11)	1.500(2)	1.499(3)
P1-O2	1.5208(9)	1.5342(11)	1.532(3)	1.528(3)
P1-O3	1.5832(10)	1.5367(11)	1.550(3)	1.546(3)
P204	1.5057(9)	1.5039(10)	1.520(2)	1.511(3)
P205	1.5293(9)	1.5280(11)	1.522(3)	1.515(2)
P2O6	1.5570(9)	1.5552(11)	1.537(3)	1.546(2)
Bond angles				
N1-C2 -C1	108.15(7)	115.63(9)	110.0(2)	113.8(3)
O1–P1–O2	115.12(5)	113.85(6)	112.34(15)	112.69(14)
O1-P1-O3	107.44(5)	114.26(6)	112.57(14)	111.96(14)
O2-P1-O3	110.94(5)	107.96(6)	110.72(14)	111.72(14)
O4–P2–O5	114.18(5)	113.32(6)	111.03(14)	111.30(13)
O4-P2-O6	112.18(5)	109.79(6)	111.06(15)	111.39(14)
O5–P2–O6	108.09(5)	109.88(6)	113.29(14)	113.33(14)
<i>I orsion angles</i>	53 01(0)	175 40(0)	(5,2)	50 0(4)
O/-CI-C2-NI	-53.81(8)	-1/5.49(9)	-65.3(3)	-52.9(4)
PI-CI-C2-NI	67.58(8)	-60.96(11)	49.8(3)	61.4(3)
P2-C1-C2-N1	-168.80(5)	67.88(11)	176.5(2)	-170.6(2)
O7-C1-C2-C4	-173.30(7)	39.75(12)	174.7(2)	163.5(3)
P1C1C2C4	-51.91(8)	154.28(8)	-70.2(3)	-82.2(4)
P2C1C2C4	71.71(8)	-76.88(11)	56.5(3)	45.7(4)
O7-C1-C2-C3	62.76(9)	-30.61(13)	51.8(3)	90.3(4)
P1C1C2C3	-175.85(6)	83.92(11)	166.8(2)	-155.4(3)
P2C1C2C3	-52.23(8)	-147.24(9)	-66.4(3)	-27.4(4)

Table S1. Selected interatomic distances (Å), bond angles (°) and torsion angles (°) for thecompounds 1, 2, 1a and 2a.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
Compound 1				
$O2-H2\cdots O5^{i}$	1.08(4)	1.37(4)	2.4361(12)	170(4)
O3–H3…O5	0.84	2.00	2.7043(13)	141
O6−H6…O4 ⁱⁱ	0.84	1.70	2.5180(14)	163
O7−H7···O3 ⁱⁱⁱ	0.84	2.14	2.9369(14)	159
N2–H2 N ···O1 ^{iv}	0.88	1.77	2.6358(14)	166
C4–H4 <i>A</i> …O2	0.98	2.44	3.1016(16)	124
C4−H4 <i>B</i> …O4	0.98	2.42	3.1388(16)	130
C21–H21…O5 ^v	0.95	2.49	3.3378(18)	149
C41–H41…O6 ^{vi}	0.95	2.57	3.0805(17)	114
C51–H51…O6 ^{vi}	0.95	2.57	3.0801(17)	114
C51–H51…O7 ^{vi}	0.95	2.60	3.5037(18)	159
Compound 2				
O2−Ĥ2···O2 ^{vii}	0.84	1.69	2.485(2)	156
O3−H3···O4 ⁱ	0.84	1.71	2.4934(15)	154
O5−H5···O5 ⁱⁱⁱ	0.84	1.64	2.467(2)	166
O6−H6…O1 ^{viii}	0.84	1.70	2.5309(16)	171
O7−H7…O1 ^{viii}	0.84	1.99	2.8113(16)	165
N2–H2 N ···O1 W^{iv}	0.88	2.26	2.904(3)	130
O1 <i>W</i> −H1 <i>W</i> ···O4	0.84	2.04	2.856(2)	164
$O1W$ – $H2W$ ··· $O1^{i}$	0.84	2.55	3.291(3)	148
C3–H3 B ···O2 ^{vii}	0.99	2.56	3.338(2)	136
C21–H21…O5 ⁱⁱⁱ	0.95	2.28	3.176(2)	158
$C41-H41\cdots O2^{ix}$	0.95	2.21	3.1413(19)	166
			. /	
CgI CgJ	$Cg \cdots Cg$	Dihe	dral angle	
Cg $Cg^{\#}$	3.5972(15	5) 0	-	

Table S2. Proposed hydrogen bonds for 1 and 2.

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z; (iv) -x+1, -y+2, -z; (v) x, y+1, z; (vi) -x, -y+1, -z; (vii) -x+2, -y, -z+1; (viii) -x+1, -y, -z+1; (ix) -x+2, -y+1, -z+1.

(#) -x, -y+2, -z; Cg are centroids of N1–C21–N2–C41–C51 rings

Figure S9. Arrangement of neighbouring layers (shown in bright green, grey and turquoise) into three-dimensional hydrogen-bonded network in the crystal structure of **1** (a) and **2** (b). All C-bounded H atoms, cyclopropane rings (picture b), disordered position of water molecules with lower occupancy and one from both H2 and H5 hydrogen sites with half occupancy (picture b) are omitted for clarity. Symmetry codes are given in Table 2.

Figure S10. Illustration of C–H··· π type interaction (black dashed lines) occurring between neighboring layers (constituents are shown in bright green and grey) in the crystal lattice of **2** with schematic presentation of geometric relationship in this type of contacts (shown in right bottom corner). Symmetry code: (x) –*x*+2, –*y*+1, –*z*.

Figure S11. The coordination unit of $Co_3(HL2)_2(H_2O)_6 \cdot 6H_2O$ complex (**2a**) with the atomnumbering scheme. All H-atoms, except those attached to N2 and O7 are omitted for clarity. Displacement ellipsoids are drawn at 50 % probability level.

Figure S12. Formation of 8-membered ring in complexes 1a and 2a. Red arrow shows the Co2···Co2 distance, which is 4.7192(13) Å in case of 1a and 4.7705(13) Å in 2a. Symmetry code: (ii) -x+1, -y+1, -z+1.

	1a	2a		1a	2a
Bond lengths					
$Co1-O2, O2^{i}$	2.097(2)	2.061(2)	Co2–O3	2.041(3)	2.061(3)
Co1–O5, O5 ¹	2.055(3)	2.047(3)	Co2–O4 ^{II}	2.005(3)	2.014(3)
Co1–O1W,	2.203(3)	2.183(2)	Co2–O6	2.113(2)	2.130(2)
$O1W^1$					
			Co2–O7	2.248(3)	2.211(3)
			Co2–O2W	2.108(3)	2.130(3)
			Co2–O3W	2.138(2)	2.059(3)
Bond angles	0(00(10)	07.05(10)		04.40(10)	04.01/11)
O2-Co1-O1W	86.89(10)	87.35(10)	03-Co2-03W	94.42(10)	94.91(11)
$O2-Co1-O1W^1$	93.11(10)	92.65(10)	04^{n} -Co2-O6	91.45(10)	90.99(10)
05-Co1-02	89.15(10)	92.33(10)	$O4^{n}$ -Co2-O7	93.78(10)	91.03(10)
O5 ¹ –Co1–O2	90.85(10)	87.67(10)	$O4^{n}$ -Co2-O2W	92.64(11)	89.89(10)
O5–Co1–O1W	91.92(10)	89.61(10)	$O4^{II}$ – $Co2$ – $O3W$	85.94(10)	87.85(11)
$O5-Co1-O1W^{1}$	88.08(10)	90.39(10)	O6–Co2–O7	79.83(9)	80.78(9)
O3–Co2–O6	87.80(10)	85.85(10)	O2W–Co2–O6	97.21(9)	97.93(9)
O3–Co2–O7	83.37(10)	86.00(10)	O2W–Co2–	90.64(10)	90.38(10)
			O3W		
O3-Co2-O2W	90.19(10)	93.02(10)	O3W-Co2-O7	92.62(9)	90.92(10)
Symmetry codes: (i)) -x+2, -y, -z	z+1; (ii) $-x+1$	1, - <i>y</i> +1, - <i>z</i> +1		

Table S3. Selected interatomic distances (Å), bond angles (°) and torsion angles (°) for thecompounds 1a and 2a.

<i>D</i> _H··· <i>A</i>	<i>D</i> —Н	$H\cdots A$	$D \cdots A$	D — $H \cdots A$	
Compound 1a		11 21			
$O7-H7O\cdots O6^{ii}$	0.84	1 97	2 740(4)	152	
$N2-H2N\cdots O2^{iii}$	0.88	1.81	2.688(4)	171	
$01W - H1W \cdots O3$	0.84	1.81	2.000(1) 2.712(4)	170	
$01W - H2W \cdots 05W$	0.84	2.01	2.801(5)	158	
$O2W - H3W \cdots O3^{iv}$	0.84	1 94	2.772(4)	173	
$O2W-H4W\cdots O5W$	0.84	1 99	2.812(4)	165	
$O3W-H5W\cdots O1W^{iv}$	0.84	2 11	2.903(3)	157	
$O3W-H6W\cdots O4W$	0.84	1.95	2.738(4)	155	
O4 <i>W</i> −H8 <i>W</i> ···O1	0.84	1.80	2.643(4)	178	
$O5W - H9W \cdots O4W^{v}$	0.84	2.13	2.783(4)	134	
$O5W-H10W\cdots O4W^{iv}$	0.84	1.94	2.778(4)	172	
$O6W-H12W\cdots O4^{ii}$	0.84	2.23	2.894(5)	136	
$O6X-H12X\cdots O5^{vi}$	0.84	2.19	2.804(6)	130	
C3−H3 <i>B</i> ····O4	0.98	2.31	2.994(5)	126	
C4–H4 <i>A</i> …O2	0.98	2.45	3.208(4)	134	
C21–H21…O1 ⁱⁱⁱ	0.95	2.45	3.101(5)	126	
Compound 2a					
O7−H7 <i>O</i> ···O6 ⁱⁱ	0.84	1.95	2.771(4)	167	
N2–H2 N ···O2 ⁱⁱⁱ	0.86	1.94	2.781(4)	164	
O1 <i>W</i> −H1 <i>W</i> ···O3	0.84	1.97	2.794(3)	167	
O1 <i>W</i> −H2 <i>W</i> ···O5 <i>W</i>	0.84	2.22	2.960(4)	147	
O2 <i>W</i> −H3 <i>W</i> ···O3 ^{iv}	0.84	1.94	2.778(3)	172	
O2 <i>W</i> −H4 <i>W</i> ···O5 <i>W</i>	0.84	2.33	3.100(4)	153	
O3 <i>W</i> −H5 <i>W</i> ···O6 <i>W</i>	0.84	1.98	2.734(4)	149	
O3 <i>W</i> −H6 <i>W</i> ···O4 <i>W</i>	0.84	1.89	2.712(4)	165	
O4 <i>W</i> −H7 <i>W</i> ···O5 <i>W</i> ^{vii}	0.84	1.93	2.764(5)	176	
O4 <i>W</i> −H8 <i>W</i> ···O1	0.84	1.77	2.610(4)	177	
O5 <i>W</i> −H9 <i>W</i> ···O6	0.84	1.97	2.801(4)	171	
$O5W-H10W\cdots O4W^{iv}$	0.84	2.14	2.852(5)	143	
O6 <i>W</i> −H11 <i>W</i> ···O5 ^{vi}	0.84	1.92	2.744(3)	167	
O6 <i>W</i> −H12 <i>W</i> ···O2 <i>W</i>	0.84	2.18	2.903(4)	145	
C3–H3 <i>B</i> ····O4	0.99	2.18	2.954(5)	134	
C4–H4 A ····O1 W^{i}	0.99	2.46	3.320(5)	145	
C21–H21…O1 ⁱⁱⁱ	0.95	2.29	3.061(5)	137	
Symmetry codes: (i) $-r+2 -v -z+1$: (ii) $-r+1 -v+1 -z+1$: (iii)					

Table S4. Hydrogen bonds for 1a and 2a.

Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -y, -z; (iv) -x+1, -y, -z+1; (v) x, y, z+1; (vi) x-1, y, z; (vii) x, y, z-1

Figure S13. Packing modes of the layers in **1a** (a), **2a** (b) and $Cu_3(HZol)_2(H_2O)_6 \cdot 6H_2O$ complex (c) [25]. All H atoms not involved in the creation of hydrogen bonds and O6W lattice water molecules in the pictures a and b are omitted for clarity. Two adjacent layers are shown in bright green and light grey.

Figure S14. Role of O6W lattice water molecule in stabilization of the 3D network in complexes **1a** (a) and **2a** (b). All H atoms not involved in the creation of hydrogen bonds and O4W, O5W lattice water molecules are omitted for clarity. Two adjacent layers are shown in bright green and light grey.

Figure S15. IR spectrum of 1.

Figure S16. IR spectrum of 2.

Figure S17. IR spectrum of 1a.

Figure S18. IR spectrum of 2a.

Figure S19. A comparison of IR spectra of ligand 1 (black line) and its coordination polymer 1a (blue line).

Figure S20. A comparison of IR spectra of ligand 2 (green line) and its coordination polymer 2a (red line). 25

compound		Devidence of the second	compound		
1	1 2 Band assignment ^o		1a	2a	
3461	3265		3500-3200 br ^a	3500-3200 br	
5401	5205	V(O-H)	(mostly $O-H\cdots O$)	(mostly $O-H\cdots O$)	
3166	3165	v(N–H)/im	3156 br	3146 br	
3054 3006		$v_{as}(C-H)/im$	3059		
2959		v.(C-H)/CH2	3001		
	3004	v (C-H)/im	5001		
	2982	v (C-H)/im			
	2889	$\frac{v_{as}(C-H)}{(C-H)}$	- 2955		
2716 br	2728 br				
2637 br	2660 br	ν(P–OH)			
2007 01	1655 br	δ(H ₂ O)	1663 br	1650 br	
1580	1571	*(2*)	1575	1565	
1535	1537		1532	1537	
1468	1460	v(C=C)/im; v(N=C)/im, v(N-C)/im	1476	1452	
1452	1439		1456	1424	
1397		S(CCU), S(CU)	1206		
1374		$0(CCH_3); 0(CH_3)$	1386		
1352	1356	v(N–C)/im	1357	1352	
1323		δ(PO–H); δ(CCH ₃); δ(CH ₃)	1312		
1309	1224	S(DO, II): S(CII.)		1221	
1240 ab	1334	$0(PO-H); 0(CH_2)$		1331	
1240 SH 1210	1234	v(C–C)/im	1249	1268	
1179	1174	v(P=O)	1198	1194	
1079	1089	$\delta(C-H)$	1081	1083	
1047	1049	v(C-OH)	1046	1048	
	1019	v(e on)	1029	1021	
1005	1006	$\frac{V(1-C)}{W(N-C)}$	1029	1004	
1005	076	V(1N-C)/1111	051	068	
948 br	970	ν(Р-О)	932	908 942	
	755		,52	895	
896	906	v(P–O)	893	871	
832	831	v(P–O)	847	839	
	796	$\rho_r(CH_2)$		784 br	
747	758	γ(POH)			
646	646	v(C-P)	649	652	
623	619	π (C–H)/im	622	622	
(01 -1	595		574	575	
601 sh	575 τ_1/im	574	5/5		
5 4 7	533		541	500	
547	514		341	322	
500	513	δ(O-P-O); δ(C-P)	514	522	
470	462		463	455	
443	433		438	418	

Table S5. Tentative assignments of the observed IR bands [cm⁻¹] for ligands 1 and 2 and related coordination compounds 1a and 2a.

^a sh – shoulder. br - broad

^b v_a – antisymmetric stretching, v_s – symmetric stretching, δ – bending in-plane, π – bending out of plane, ρ_r – rocking, γ – torsion

Figure S21. TG-DTA plot for the compound 1a.

Figure S22. TG-DTA plot for the compound 2a.

Figure S23. Temperature dependence of the effective magnetic moments of **1a** (triangles) and the reciprocal magnetic susceptibility (diamonds). Solid lines show the best fit of the data according to model **C**.

Figure S24. Temperature dependence of the effective magnetic moments of **2a** (triangles) and the reciprocal magnetic susceptibility (diamonds). Solid lines show the best fit of the data according to model **C**.

$J_1J_1J_2$ alternating chains (model B)

The magnetic pathways in **1a** and **2a** consist of the symmetric linear Co2Co1Co2 trimers, held by the phosphonate bridges O2–P1–O3 and O5–P2–O6. Two peripheral Co2 atoms are connected to adjoining trinuclear units with the double O4–P2–O6 bridges, creating finally a *zig-zag* chain. Thus, from a magnetic point of view, the two complexes consist of $J_1J_1J_2$ alternating chains.Using the Hamiltonian:

$$H = -J_1 \sum (S_{3i} S_{i+1} + S_{3i+1} S_{3i+2}) - J_2 \sum S_{3i-1} S_{3i}$$
(1)

Abu-Youssef [1] has derived the exact expression for magnetic susceptibility of $J_1J_1J_2$ alternating chain with Heisenberg-type exchange between the classical spins:

$$\chi_{\rm alt} = (N\beta^2 g^2 / 9k_{\rm B}T) S(S+1) F_{\rm alt}$$
⁽²⁾

$$F_{\text{alt}} = \{3(1 - u_1^4 u_2^2) + 4u_1(1 - u_1^2 u_2^2) + 2u_2(1 + u_1)^2(1 - u_1^2) + 2u_1^2(1 - u_2^2)\} / (1 - u_1^2 u_2)^2$$
(3)

where $u_i = \operatorname{coth} (x) - 1 / x$, $x = [J_iS(S + 1)] / k_BT$, and *N*, β , *g*, and k_B have their usual meanings. If the antiferromagnetic coupling is weak or its character is ferromagnetic, the influence of zero-field splitting (zfs) must be taken into account in an analysis of the magnetic behavior at low temperatures. The bulk susceptibility of **1a** and **2a** was calculated in the 5–300 K temperature range by the combination [2-4] of zfs and the alternating chain $J_1J_1J_2...$ as:

$$\chi = \chi_{zfs} \cdot F_{alt} \cdot S(S+1)/9 \cdot 4/5 \tag{4}$$

assuming that the zfs part can be represented by [5]:

$$\chi_{\rm zfs} = (\chi_{\parallel} + 2\chi_{\perp}) / 3 \tag{5}$$

$$\chi_{\parallel} = (N\beta^2 g_{\parallel} 2/4k_{\rm B}T) \left(1 + 9d^2\right) / \left(1 + d^2\right)$$
(5a)

$$\chi_{\perp} = (N\beta^2 g_{\perp}^2 / k_{\rm B}T) \left[1 + 3k_{\rm B}T / 4D \cdot (1 - d^2)\right] / (1 + d^2)$$
(5b)

where $d = \exp(-D/k_{\rm B}T)$ and D is the axial zfs parameter. The coefficient 4/5 in Eq. (4) ensures that for D = 0 this equation reduces to susceptibility of the alternating chain $J_1J_1J_2$ of Abu-Youssef [1]. In order to avoid overparametrization isotropic g value was assumed. The best agreement between theory and experiment was obtained for $J_1 = -1.62 \text{ cm}^{-1}$, $J_2 = 0.83 \text{ cm}^{-1}$, $D = 52.1 \text{ cm}^{-1}$, $g = 2.61 \text{ (R} = \sum[(\chi T)_{\rm exp} - (\chi T)_{\rm calc}]^2 / \sum[(\chi T)_{\rm exp}]^2 = 3.0 \cdot 10^{-5})$ for **1a** and $J_1 = -1.58 \text{ cm}^{-1}$, $J_2 = 0.25 \text{ cm}^{-1}$, $D = 43.8 \text{ cm}^{-1}$, $g = 2.71 \text{ (R} = 1.5 \cdot 10^{-5})$ for **2a**. The susceptibility curves resulting from the above parameters [depicted as $\mu_{\rm eff}(T)$] are shown in Figure S25.

References

- M. A. M. Abu-Youssef, M. Drillon, A. Escuer, M. A. S. Goher, F. A. Mautner and R. Vicente, *Inorg. Chem.*, 2000, **39**, 5022.
- 2. C. G. Barraclough, A. K. Gregson and S. Mitra, J. Chem. Phys., 1974, 60, 962.
- F. S. Delgado, N. Kerbellec, C. Ruiz-Pérez, J. Cano, F. Lloret and M. Julve, *Inorg. Chem.*, 2006, 45, 1012.
- F. Lloret, M. Julve, J. Cano, R. Ruiz-García and E. Pardo, *Inorg. Chim. Acta*, 2008, 361, 3432.
- 5. R. Boča, Struct. Bond., 2006, 117, 1.

Figure S25. Temperature dependence of the effective magnetic moments of **1a** (triangles) and **2a** (diamonds) below 20 K, measured in 0.100 *T*. Solid lines show the best fit of the data according to model **B**. Data for the full temperature range are practically identical to those calculated by method **C** (Figures S24 and S25).