Supporting Information

Silver and Palladium Alloy Nanoparticles Catalysts: Reductive coupling of Nitrobenzene through Light Irradiation

Sunari Peiris,^a Sarina Sarina,^a* Chenhui Han,^a Qi Xiao,^b and Huai-Yong Zhu^a

a. School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Technology, Queensland University of Technology, Brisbane, QLD 4001, Australia.b. CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia.

*Corresponding author email: <u>s.sarina@qut.edu.au</u>

Figure S1. TEM image of (a) Ag-Pd(1:1)/ZrO₂ catalyst; (b) Ag-Pd(1:1)/Al₂O₃ catalyst.

(b)

Electron Image 1

Zr Lα1

500µm ٦

Г

Ag Lα1

Figure S2. (a) SEM image of Ag-Pd(1:1) /ZrO₂ sample and the corresponding mapping of Zr, Ag and Pd elements.; (b) EDX spectrum of Ag-Pd(1:1) /ZrO₂ sample.

Entry	Catalyst	Ag	Pd	Ag:Pd ratio		
		(Wt%)	(Wt%)	Calculated Wt. Ratio	Experimental Wt. Ratio	Calculated molar Ratio
1	Ag:Pd(2:1)	2	1	2:1	1.89:1	1.97:1
2	Ag:Pd(1:1)	1.5	1.5	1:1	1:1.01	1:1.01
3	Ag:Pd(1:2)	1	2	1:2	1:1.78	1:2.03
4	Ag	3	0	1:0	1:0	1:0
5	Pd	0	3	0:1	0:1	0:1

Table S1: The calculated corresponding Au-Pd molar in photocatalysts- ZrO₂ and Al₂O₃.

The alloy photocatalysts with different Ag and Pd contents, pure Ag and pure Pd catalyst supported by ZrO_2/Al_2O_3 were also prepared in the impregnation-reduction method for reference. The corresponding Ag-Pd molar ratios were calculated and calculated Ag-Pd weight ratios were compared with an experimental weight ratio obtains via SEM- EDX spectrum.

Characterization of products

The products were identified using an Agilent 6980 gas chromatography (GC) coupling with an Agilent HP5973 mass spectrometer equipped with a HP-5 column. Reference mass spectra from Scifinder are provided for comparison. Nevertheless spectra may reflect different instrument/ ionization methods:

a) 4-Methoxybenzenamine- m/z for C₇H₉NO is 123.15

Reference spectrum of 4-Methoxybenzenamine found from SciFinder:

Reference spectrum of Azobenzene, 4,4'-dimethoxy found from SciFinder:

Reference spectrum of 4-Bromobenzenamine found from SciFinder:

d) 4-Methylbenzenamine - m/z for C₇H₉N is 107.0

Reference spectrum of 4-Methylbenzenamine found from SciFinder:

e) 4-Chlorobenzenamine- m/z for C₆H₆ClN is 127.0

Reference spectrum of 4-Chlorobenzenamine found from SciFinder:

f) Azobenzene, 4,4'-dichloro- m/z for $C_{12}H_8Cl_2N_2$ is 251.1

Reference spectrum of Azobenzene, 4,4'-dichloro- found from SciFinder:

g) 4-Iodobenzenamine - m/z for C₆H₆IN is 218.9

Reference spectrum of 4-Iodobenzenamine found from SciFinder:

h) Aniline - m/z for C₆H₇N is 93.0

Reference spectrum of Aniline found from SciFinder:

i) Azobenzene - m/z for $C_{12}H_{20}N_2$ is 182.2

Reference spectrum of Azobenzene found from SciFinder:

j) 4-Aminobenzonitrile - m/z for $C_7H_6N_2$ is 118.1

Reference spectrum of 4-Aminobenzonitrile found from SciFinder:

