Synthesis, Structural Characterization and Conversion of Dinuclear Iron-sulfur Clusters Containing the Disulfide

Ligand: [Cp*Fe($\left.\mu-\eta^{2}: \eta^{2}-b d t\right)\left(c i s-\mu-\eta^{1}: \eta^{1}-S_{2}\right) \mathbf{F e C p} *$], $\left[\mathrm{Cp} * \mathrm{Fe}\left(\mu-\mathrm{S}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{2}\right)\right)\left(c i s-\mu-\eta^{1}: \eta^{1}-\mathrm{S}_{2}\right) \mathrm{FeCp} *\right]$, and $\left[\{\mathrm{Cp} * \mathrm{Fe}(\mathrm{bdt})\}_{2}\left(\right.\right.$ trans $\left.\left.-\mu-\eta^{1}: \eta^{1}-S_{2}\right)\right]$

Xiaoxiao Ji, ${ }^{\text {a }}$ Peng Tong, ${ }^{\text {a }}$ Dawei Yang, ${ }^{*, \mathrm{a}}$ Baomin Wang, ${ }^{\text {a }}$ Jinfeng Zhao, ${ }^{a}$ Yang $\mathbf{L i}^{\mathbf{a}}$ and Jingping $\mathbf{Q u}{ }^{*, a, b}$

[^0]
Contents:

Experimental Section S3
Table Sl. Crystallographic data for $\mathbf{2}$ and $\mathbf{3}$ S6
Table S2. Crystallographic data for $\mathbf{4}$ S7
Figure Sl. ORTEP diagram of $\mathbf{2}$ S8
Table S3. Selected bond distances (\AA) and bond angles (deg) for 2 S8
Figure S2. ORTEP diagram of 3 S9
Table S4. Selected bond distances (\AA) and bond angles (deg) for 3 S9
Figure S3. ORTEP diagram of 4. S10
Table S5. Selected bond distances (\AA) and bond angles (deg) for 4 S10
Figure S4.The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ S11
Figure S5. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3} S11
Figure S6. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ S12
Figure S7. The time-dependent ${ }^{1} \mathrm{H}$ NMR spectra of the conversion from $\mathbf{3}$ to $\mathbf{4}$ and 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at ambient conditions (purple, complex $\mathbf{3}$; green, complex $\mathbf{4}$; blue, complex 5). S12
Figure S8. The EPR spectrum of 4 S13
Figure S9. The IR (film) spectrum of 2 S13
Figure S10. The IR (film) spectrum of $\mathbf{3}$ S14
Figure S11. The IR (film) spectrum of 4 S14

Experimental Section

General Procedures

All manipulations were routinely carried out under an argon atmosphere, using standard Schlenk-line techniques. All solvents were dried and distilled over an appropriate drying agent under argon. Complex $\left[\mathrm{Cp} * \mathrm{Fe}\left(\mu-\eta^{2}: \eta^{4}-\mathrm{bdt}\right) \mathrm{FeCp} *\right]$ (1) was prepared according to the literature. ${ }^{1}$

Spectroscopic measurements

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Brüker 400 Ultra Shield spectrometer. Infrared spectra were recorded on a NEXVSTM FT-IR spectrometer. Elemental analyses were performed on a Vario EL analyzer. The EPR spectrum was recorded at room temperature on a Brüker EMX-6/1 EPR spectrometer.

X-ray Crystallography

The data for complexes 2, 3, and $\mathbf{4}$ were afforded on a Brüker SMART APEX CCD diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$). Empirical absorption corrections were performed using the SADABS program. ${ }^{2}$ Structures were solved by direct methods and refined by full-matrix least-squares based on all data using F^{2} using Shelx97. ${ }^{3}$ Anisotropic thermal displacement coefficients were determined for all non-hydrogen atoms. Hydrogen atoms were placed at idealized positions and refined with fixed isotropic displacement parameters.

Synthesis of $\left[\mathbf{C p} * \mathrm{Fe}\left(\mu-\eta^{2}: \eta^{2}-\right.\right.$ bdt $\left.)\left(c i s-\mu-\eta^{1}: \eta^{1}-\mathbf{S}_{2}\right) \mathrm{FeCp} *\right]$ (2)

A solution of $1(522 \mathrm{mg}, 1 \mathrm{mmol})$ in 25 mL of toluene was treated with $\mathrm{S}_{8}(64 \mathrm{mg}$, 0.25 mmol) at $0{ }^{\circ} \mathrm{C}$. After 3 h , the resulting solution was evaporated to dryness at reduced pressure. Complex $2(562 \mathrm{mg}, 0.96 \mathrm{mmol})$ was obtained as a green crystalline powder in 96% yield. The crystals of $\mathbf{2}$ suitable for X-ray analysis were grown from saturated n-hexane solution at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 6.56(\mathrm{~m}, 2 \mathrm{H}$, bdt- H); 6.20 (m, 2H, bdt-H); 1.08 (s, 30H, Cp*-CH ${ }_{3}$). IR (film, cm^{-1}): 2981, 2902, 1375, 1023, 551. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{~S}_{4}$: C, 53.24; H, 5.84. Found: C, 52.62; H,

Synthesis of $\left[\mathbf{C p} * \mathrm{Fe}\left(\mu-\mathbf{S}\left(\mathrm{C}_{6} \mathbf{H}_{4} \mathbf{S}_{2}\right)\right)\left(\right.\right.$ cis $\left.\left.-\mu-\eta^{1}: \eta^{1}-\mathbf{S}_{2}\right) \mathbf{F e C p}{ }^{*}\right]$ (3)

Method 1: A solution of $\mathbf{1}(522 \mathrm{mg}, 1 \mathrm{mmol})$ in 25 mL of THF was treated with S_{8} ($96 \mathrm{mg}, 0.375 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After 5 h , the resulting solution was evaporated to dryness at reduced pressure. Complex $3(575 \mathrm{mg}, 0.93 \mathrm{mmol})$ was obtained as a brown crystalline powder in 93% yield.

Method 2: A solution of $2(586 \mathrm{mg}, 1 \mathrm{mmol})$ in 25 mL of THF was treated with S_{8} ($32 \mathrm{mg}, 0.125 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. After 3 h , the resulting solution was evaporated to dryness at reduced pressure. Complex $3(587 \mathrm{mg}, 0.95 \mathrm{mmol})$ was obtained as a brown crystalline powder in 95% yield. The crystals of $\mathbf{3}$ suitable for X-ray analysis were obtained by THF solution layered with n-hexane at $-30^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.61\left(\mathrm{~m}, 1 \mathrm{H}\right.$, bdt- H); $6.96\left(\mathrm{~m}, 3 \mathrm{H}\right.$, bdt- H); $1.20\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}\right) ; 1.16$ (s, $15 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$). IR (film, cm^{-1}): 2964, 2905, 1374, 1021, 801, 534. Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{~S}_{5}$: C, 50.48; H, 5.54. Found: C, 50.46; H, 5.38.

Synthesis of $\left[\left\{\mathbf{C p}^{*}(\text { bdt }) \mathbf{F e}\right\}_{2}\left(\right.\right.$ trans $\left.\left.-\mu-\eta^{1}: \eta^{1}-\mathbf{S}_{2}\right)\right]$ (4)

At $-78^{\circ} \mathrm{C}, \mathrm{S}_{8}(128 \mathrm{mg}, 0.5 \mathrm{mmol})$ was added to a solution of $\mathbf{1}(522 \mathrm{mg}, 1 \mathrm{mmol})$ in 25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ with vigorous stirring. The reaction mixture was allowed to gradually warm to ambient temperature and continue to stir for 48 h . The resulting brown solution was evaporated to dryness at reduced pressure. The residue was extracted with THF (20 mL) to obtain a brown solution at room temperature. The crystals of $\mathbf{4}$ suitable for X-ray analysis were obtained by THF solution layered with n-hexane at room temperature. Complex $4(109 \mathrm{mg}, 0.15 \mathrm{mmol})$ was obtained as brown crystals in 15% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta-1.91$ (brs, 4 H , bdt- H); -3.74 (brs, $30 \mathrm{H}, \mathrm{Cp}^{*}-\mathrm{CH}_{3}$); -10.24 (brs, 4 H, bdt- H). IR (film, cm^{-1}): 2961, 2907, 1426, 1053, 739. Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Fe}_{2} \mathrm{~S}_{6}$: C, 52.89; H, 5.27. Found: C, 52.33; H, 5.47.

References

1 Y. Li, Y. Li, B. Wang, Y. Luo, D. Yang, P. Tong, J. Zhao, L. Luo, Y. Zhou, S. Chen, F. Cheng and J. Qu, Nat. Chem., 2013, 5, 320-326.

2 G. M. Sheldrich, SADABS, Program for area detector absorption correction, Institute for Inorganic Chemistry, University of Göttingen, Germany, 1996.

3 (a) G. M. Sheldrich, SHELX97, Program for refinement of crystal structure, University of Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXS97, Program for solution of crystal structures, University of Göttingen, Germany, 1997.

Table S1. Crystallographic data for 2 and 3

Complex	2	3
Formula	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{~S}_{5}$
Formula weight	586.47	618.53
Crystal dimensions (mm^{3})	$0.33 \times 0.31 \times 0.29$	$0.33 \times 0.31 \times 0.29$
Crystal system	Monoclinic	Orthorhombic
Space group	C2/c	Pnma
a (\AA)	27.672(16)	15.281(5)
b (A)	13.486(8)	21.433(7)
c (${ }_{\text {A }}$)	17.289(10)	8.290(3)
$\alpha\left({ }^{\circ}\right)$	90.00	90.00
$\beta\left({ }^{\circ}{ }^{\text {) }}\right.$	126.191(8)	90.00
$\gamma\left({ }^{\circ}\right)$	90.00	90.00
Volume (\AA^{3})	5207(5)	2715.1(16)
Z	8	4
$T(\mathrm{~K})$	296(2)	296(2)
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.496	1.513
$\mu\left(\mathrm{mm}^{-1}\right)$	1.448	1.467
$F(000)$	2448	1288
No. of rflns. collected	14112	17040
No. of indep. rflns. $/ R_{\text {int }}$	4944 / 0.1145	3184 / 0.0923
No. of obsd. rflns. [$\left.I_{0}>2 \sigma\left(I_{0}\right)\right]$	2687	1886
Data / restraints / parameters	4944 / 0 / 299	3184 / 0 / 174
$R_{l} / w R_{2}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]$	$0.0736 / 0.1617$	0.0617 / 0.1130
$R_{1} / w R_{2}($ all data)	$0.1402 / 0.1940$	$0.1138 / 0.1280$
GOF (on F^{2})	1.060	1.225
Largest diff. peak and hole (e \AA^{-3})	1.379 / -1.011	0.475 / -0.480

Table S2. Crystallographic data for 4

Complex	4
Formula	$\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{Fe}_{2} \mathrm{~S}_{6}$
Formula weight	726.68
Crystal dimensions (mm^{3})	$0.33 \times 0.31 \times 0.24$
Crystal system	Monoclinic
Space group	P2(1)/c
$\mathrm{a}(\mathrm{A})$	11.0709(3)
b (A)	18.7405(5)
c (\AA)	8.3665(2)
$\alpha\left({ }^{\circ}\right)$	90.00
$\beta\left({ }^{\circ}\right)$	106.6040(10)
$\gamma\left({ }^{\circ}\right)$	90.00
Volume (\AA^{3})	1663.45(7)
Z	2
T (K)	296(2)
$D_{\text {calcd }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.451
$\mu\left(\mathrm{mm}^{-1}\right)$	1.270
$F(000)$	756
No. of rflns. collected	5880
No. of indep. rflns. $/ R_{\text {int }}$	2867 / 0.0185
No. of obsd. rflns. [$\left.I_{0}>2 \sigma\left(I_{0}\right)\right]$	2469
Data / restraints / parameters	2867 / 0 / 181
$R_{1} / w R_{2}\left[I_{0}>2 \sigma\left(I_{0}\right)\right]$	0.0339 / 0.0950
$R_{1} / w R_{2}$ (all data)	0.0407 / 0.0992
GOF (on F^{2})	1.085
Largest diff. peak and hole (e \AA^{-3})	0.466 / -0.282

Figure S1. ORTEP diagram of 2

Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50\% probability).

Table S3. Selected bond distances (\AA) and bond angles (deg) for 2

Distances (Å)			
Fe1 $\cdots \mathrm{Fe} 2$	$3.395(3)$	$\mathrm{Fe} 1-\mathrm{S} 1$	$2.348(2)$
$\mathrm{Fe} 1-\mathrm{S} 2$	$2.366(2)$	$\mathrm{Fe} 1-\mathrm{S} 4$	$2.118(2)$
$\mathrm{Fe} 2-\mathrm{S} 1$	$2.351(2)$	$\mathrm{Fe} 2-\mathrm{S} 2$	$2.359(2)$
$\mathrm{Fe} 2-\mathrm{S} 3$	$2.120(3)$	$\mathrm{S} 3-\mathrm{S} 4$	$2.005(3)$
Angles (deg)			
S1-Fe2-S3	$95.47(9)$	$\mathrm{Fe} 1-\mathrm{S} 2-\mathrm{Fe} 2$	$91.86(8)$
S2-Fe2-S3	$94.53(9)$	$\mathrm{Fe} 1-\mathrm{S} 1-\mathrm{Fe} 2$	$92.50(9)$
S1-S4-Fe3	$109.23(13)$	$\mathrm{Fe} 2-\mathrm{S} 3-\mathrm{S} 4$	$109.02(11)$
Torsion angles (deg)			
S3-S4Fe 1-S1	$36.41(16)$	Cp *1-Cp*2	$19.84(34)$
S3-S4Fe1-S2	$38.18(16)$		

Figure S2. ORTEP diagram of $\mathbf{3}$

Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50\% probability).

Table S4. Selected bond distances (\AA) and bond angles (deg) for 3

Distances (Å)			
Fe1 $\cdots \mathrm{Fe} 2$	$3.697(2)$	$\mathrm{Fe} 1-\mathrm{S} 1$	$2.294(2)$
Fe1-S5	$2.146(3)$	$\mathrm{Fe} 1-\mathrm{S} 4$	$2.117(2)$
S2-S5	$2.061(4)$	$\mathrm{S} 3-\mathrm{S} 4$	$1.973(2)$
Angles (deg)	$114.02(78)$	$\mathrm{S} 2-\mathrm{Fe} 1-\mathrm{S} 5$	$21.96(8)$
Fe1-S4-S3	$101.58(8)$	$\mathrm{S} 4-\mathrm{Fe} 1-\mathrm{S} 5$	$89.33(10)$
S2-Fe1-S4	$\mathrm{S} 1-\mathrm{Fe} 1-\mathrm{S} 4$	$92.27(6)$	
S1-Fe1-S5	$105.23(14)$		
Fe1-S5-S2	$25.80(9)$	$\mathrm{S} 4-\mathrm{S} 3 \mathrm{Fe} 2-\mathrm{S} 2$	$52.24(11)$
Torsion angles (deg)	$\mathrm{Cp} * 1-\mathrm{Cp} 22$	$31.58(18)$	
S3-S4Fe1-S1	$70.59(12)$		
S3-S4Fe1-S5			

Figure S3. ORTEP diagram of 4

Hydrogen atoms are omitted for clarity (thermal ellipsoids shown at 50\% probability).

Table S5. Selected bond distances ((\AA) and bond angles (deg) for 4

Distances (A)			
Fe1 $\cdots \mathrm{Fe} 2$	$5.404(1)$	$\mathrm{Fe} 1-\mathrm{S} 1$	$2.194(1)$
$\mathrm{Fe} 1-\mathrm{S} 2$	$2.191(2)$	$\mathrm{Fe} 1-\mathrm{S} 3$	$2.177(2)$
$\mathrm{S} 3-\mathrm{S} 4$	$1.978(1)$		
Angles (deg)			$97.46(3)$
$\mathrm{Fe} 1-\mathrm{S} 3-\mathrm{S} 4$	$\mathrm{~S} 2-\mathrm{Fe} 1-\mathrm{S} 3$	$88.98(3)$	
$\mathrm{S} 1-\mathrm{Fe} 1-\mathrm{S} 3$	$99.05(3)$	$\mathrm{S} 1-\mathrm{Fe} 1-\mathrm{S} 2$	
Torsion angles (deg)		$\mathrm{Cp} * 1-\mathrm{Cp} * 2$	$0.00(20)$
S1-S2Fe1-S3	$98.96(4)$		

Figure S4. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$

Figure S5. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ in CDCl_{3}

Figure S6. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$

Figure S7. The time-dependent ${ }^{1} \mathrm{H}$ NMR spectra of the conversion from $\mathbf{3}$ to $\mathbf{4}$ and 5 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at ambient conditions (purple, complex 3; green, complex 4; blue, complex 5).

Figure S8. The EPR spectrum of 4

Figure S9. The IR (film) spectrum of 2

Figure S10. The IR (film) spectrum of 3

Figure S11. The IR (film) spectrum of 4

[^0]: ${ }^{\text {a }}$ State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, P.R. China.
 ${ }^{\mathrm{b}}$ Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P.R. China.

