Electronic Supplementary Information

Noninnocent ligands: heteroleptic nickel complexes with α -diimine and

1,2-diketone derivatives

Hong Yang,^a Yanxia Zhao,^a Bin Liu,^a Ji-Hu Su,^b Igor L. Fedushkin,^c Biao Wu,^a Xiao-Juan Yang^{*a}

^{*a*} Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China

^b Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China

^c G. A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Tropinina 49, 603950, Nizhny Novgorod GSP-445, Russia

Table of contents:

S1. Experimental

Table S1. Crystal data and refinement details for compounds 2–6.

Figs. S1–S4. ¹H and ¹³C NMR of compounds 2–5.

Fig. S5. ¹H NMR of the paramagnetic compound $[{LNi}_2]$ (1).

Fig. S6. EPR spectrum of 5 in C_6D_6 .

Fig. S7. ¹H NMR of compound [LNi(MeC[O]C[O]Me)].

Fig. S8. ¹H NMR of compound **5** with addition of 1.0 equiv of DA (MeC[O]C[O]Me).

Fig. S9. EPR spectra of compound 6.

S2. DFT computations

Fig. S10. Optimized structures of the model compounds 2'-6'.

Fig. S11. Spin density of the model compound 6'.

Tables S2–S5. Cartesian coordinates of the optimized geometry for 2'–6'.

Compound	2	3	4
formula	$C_{42}H_{50}N_2NiO_2$	$C_{37}H_{48}N_2NiO_2$	$C_{42}H_{60}N_2NiO_2$
Mw	673.55	611.48	683.63
crystal system	Orthorhombic	Monoclinic	Monoclinic
space group	$P2_{1}2_{1}2_{1}$	$P2_{1}/c$	$P2_{1}/c$
<i>a</i> (Å)	10.5244(19)	14.730(3)	13.551(2)
<i>b</i> (Å)	18.501(3)	15.912(3)	16.226(3)
<i>c</i> (Å)	19.839(4)	15.083(3)	22.289(4)
α()	90	90	90
β ()	90	92.038(2)	106.116(2)
γ(⁹	90	90	90
$V(\text{\AA}^3)$	3862.9(12)	3533.0(12)	4708.4(13)
Ζ	4	4	4
$\mu (\mathrm{mm}^{-1})$	0.537	0.581	0.441
<i>F</i> (000)	1440	1312	1480
ө range	1.505-24.707	1.383-25.136	1.564-25.090
total reflns	6554	6256	8320
<i>R</i> _{int}	0.0433	0.0518	0.0492
unique reflns	5341	4741	6441
R_1 , wR_2 (all data)	0.0530, 0.0981	0.0704, 0.1618	0.0609, 0.1420
$\operatorname{GOF}(F^2)$	0.973	1.087	0.968

Table S1.	Crystal Data and refinement details for compounds 2–6 .	

Compound	5	6
formula	$C_{60}H_{86}N_4Ni_2O_2$	C46H60N2NiO3
Mw	1012.74	770.66
crystal system	Monoclinic	Monoclinic
space group	$P2_{1}/n$	$P2_{1}/n$
<i>a</i> (Å)	13.990(2)	11.400(2)
<i>b</i> (Å)	22.730(4)	28.893(5)
<i>c</i> (Å)	19.155(3)	13.698(2)
α()	90	90
β ()	109.140(2)	92.651(3)
γ()	90	90
$V(\text{\AA}^3)$	5754.5(16)	4507.1(14)
Z	4	4
μ (mm ⁻¹)	0.697	0.478
<i>F</i> (000)	2184	1652
ө range	1.582-24.97	1.410-25.053
total reflns	10062	7944

7388	5283
0.0431	0.0493
0.0739, 0.1608	0.0910, 0.1686
1.091	1.012
	7388 0.0431 0.0739, 0.1608 1.091

3.551 3.534 3.517 3.517 3.500 3.483

Fig. S1. ¹H and ¹³C NMR of compound $[L^0Ni^{II}(PhC(O)-C(O)Ph)^{2^-}]$ (2).

Fig. S2. ¹H and ¹³C NMR of compound $[L^0Ni^{II}(PhC(O)-C(O)Me)^{2^-}]$ (3).

Fig. S4. ¹H and ¹³C NMR of compound **5** (signals marked with * are from $[{LNi}_2]$).

Fig. S5. ¹H NMR of paramagnetic compound [{LNi}₂] (# denotes signals corresponding to Et₂O).

Fig. S6. EPR spectrum of 5 in C_6D_6 in relatively high concentration at room temperature.

Fig. S7. ¹H NMR of compound [LNi(OC[Me]C[Me]O)] (* denotes signals of Et₂O, # denotes the signals corresponding to trace side products).

Fig. S8. ¹H NMR spectra of compound **5** with addition of 1.0 equiv of DA.

Fig. S9. EPR spectrum of 6 recorded in THF at room temperature.

S2. DFT computations

The model compounds [L'Ni(PhC(O)-C(O)Ph)] (2'), [L'Ni(PhC(O)-C(O)Me)] (3'), $[(L'Ni)\{\mu-\eta^2,\eta^2-(MeC(O)-C(O)Me)\}(NiL')]$ (5'), and $[Na(H_2O)][L'Ni\{PhC(O)-C(O)Ph\}]$ (6') (L' = $[(PhNC(Me))_2]$, in which the 2,6-*i*Pr₂C₆H₃ groups were replaced by Ph, and the solvent Et₂O molecule on Na atom in **6** was replaced by H₂O in **6'**) were performed using the Gaussian 09 software package¹ with the BP86 functional and 6-311G* basis set.² Geometry optimizations gave bond distances that were in good agreement with the X-ray structures.

Fig. S10. Optimized structures of 2'-6'.

Fig. S11. Spin density of the model compound 6'.

Table S2. Cartesian coordinates of the optimized geometry for 2' (singlet state).

Ni	-0.91263300	-0.00015000	-0.00017600	С	-3.52938100	0.70885800	-0.07022500
0	0.42323500	-1.23537100	-0.02231300	С	-4.79141900	-1.50848500	0.25383700
0	0.42293100	1.23536900	0.02191800	Н	-5.24339700	-1.81453300	-0.70723600
Ν	-2.28625100	-1.24256500	0.06320900	Н	-5.54912500	-0.92260400	0.79601100
Ν	-2.28653000	1.24191900	-0.06377800	Η	-4.59699000	-2.42929800	0.82200600
С	-3.52924200	-0.70982900	0.06895000	С	-4.79166600	1.50721600	-0.25570500

Η	-5.24461500	1.81242300	0.70518000	-	Н	1.64381100	-3.32358000	0.40163700
Н	-5.54868400	0.92145100	-0.79897700		С	3.59035800	-3.92678800	-0.33986700
Н	-4.59703300	2.42848600	-0.82304700		Η	3.44334100	-4.98161300	-0.08570300
С	-2.08017800	-2.64037100	0.21583900		С	4.78179900	-3.51250500	-0.95232400
С	-1.31618900	-3.11299400	1.30014500		Η	5.56950200	-4.23854400	-1.17694300
С	-1.10082400	-4.48557900	1.46008200		С	4.94868800	-2.16103400	-1.29125200
Н	-0.51543800	-4.84268500	2.31320600		Η	5.86283900	-1.83084600	-1.79512000
С	-1.62675000	-5.39963700	0.53597300		С	3.94503600	-1.23113800	-1.00871700
Н	-1.45206000	-6.47237000	0.66181000		Η	4.07645100	-0.18768600	-1.30534900
С	-2.37038200	-4.92983400	-0.55588000		С	2.75081800	1.63157300	0.36312800
Н	-2.77004700	-5.63410000	-1.29224900		С	3.94512900	1.23194400	1.00769200
С	-2.59636600	-3.55914100	-0.71896400		Η	4.07721600	0.18840600	1.30370100
С	-2.08080200	2.63986700	-0.21568100		С	4.94846100	2.16216900	1.29027000
С	-2.59748500	3.55795100	0.71952000		Η	5.86303000	1.83211700	1.79346800
С	-2.37182600	4.92880300	0.55730900		С	4.78075400	3.51377000	0.95224600
Н	-2.77187400	5.63252800	1.29398800		Η	5.56822600	4.24005400	1.17688900
С	-1.62802000	5.39944000	-0.53406300		С	3.58879200	3.92783000	0.34065500
Η	-1.45356500	6.47229000	-0.65922400		Η	3.44110300	4.98273900	0.08722800
С	-1.10162700	4.48606200	-1.45858100		С	2.58194000	3.00206500	0.05456600
Н	-0.51611700	4.84382900	-2.31134100		Η	1.64216800	3.32409700	-0.40022200
С	-1.31668300	3.11332300	-1.29952700		Η	-0.90509100	2.39081100	-2.00724600
С	1.64771600	-0.69931300	-0.09013000		Η	-3.15093200	3.18573600	1.58647400
С	1.64755500	0.69963500	0.08985200		Η	-0.90496900	-2.38995800	2.00755000
С	2.75125300	-1.63097700	-0.36332100		Η	-3.14968900	-3.18759800	-1.58628400
С	2.58317800	-3.00134900	-0.05384800					

Table S3. Cartesian coordinates of the optimized geometry for 3' (singlet state).

Ni	-0.53287400	0.04112500	-0.01859700	Н	-4.20414300	3.07898200	0.57683800
0	1.26086800	-0.22790200	-0.00267800	С	0.80804300	2.60914100	-0.05060400
0	-0.67074500	-1.77323500	-0.00508600	С	1.79300700	2.35785400	-1.02547400
Ν	-0.41597900	1.88938900	-0.08536300	С	3.00305700	3.05853900	-0.99648500
Ν	-2.36022900	0.33720900	0.00659500	Н	3.75836800	2.85706900	-1.76216800
С	-1.61045300	2.52811500	-0.10599900	С	3.25382100	4.00409500	0.00764900
С	-2.72193000	1.64166000	-0.04404600	Н	4.20360100	4.54710000	0.02819400
С	-1.77093500	4.01893100	-0.24519700	С	2.28505500	4.24059700	0.99368600
Н	-0.88187200	4.47357000	-0.70385100	Н	2.47925800	4.96188200	1.79383300
Н	-1.92718600	4.52377100	0.72544600	С	1.07040100	3.54825600	0.96826400
Н	-2.64144900	4.25748200	-0.87590200	С	-3.33056000	-0.70024700	0.04002700
С	-4.14475200	2.12913500	0.02356800	С	-4.29531200	-0.83803200	-0.97793800
Н	-4.79245100	1.39821100	0.52797400	С	-5.23424400	-1.87356000	-0.92294300
Н	-4.58032800	2.30915600	-0.97623100	Н	-5.97465000	-1.97398900	-1.72284500

С	-5.22071000	-2.78477200	0.14267700	Н	6.90483500	-2.53422000	0.08409600
Н	-5.95637100	-3.59370800	0.18376600	С	4.94517400	-3.31580900	-0.42683900
С	-4.25238300	-2.65917400	1.14856400	Н	5.33247200	-4.27405000	-0.78854800
Н	-4.22990300	-3.37035200	1.98017000	С	3.56911900	-3.07071100	-0.46838800
С	-3.30647400	-1.63107700	1.09653600	Н	2.90753400	-3.82836700	-0.89470900
С	1.60643400	-1.52917300	-0.02825800	С	0.46477600	-3.89228700	0.07669700
С	0.50784400	-2.39459000	-0.00209100	Н	-0.46602500	-4.19258400	0.58197000
С	3.03807700	-1.83947200	-0.01382400	Н	1.32006200	-4.30227200	0.63486400
С	3.94512300	-0.85311200	0.44651300	Н	0.45536100	-4.36236600	-0.92398400
Н	3.54411800	0.10814800	0.77600300	Н	1.59181100	1.61003900	-1.79377600
С	5.31808500	-1.10371800	0.48227400	Н	0.32619400	3.70765400	1.75398100
Н	5.99853000	-0.32859000	0.85014300	Н	-2.54247400	-1.52671000	1.86915200
С	5.82836800	-2.33884500	0.05393900	Н	-4.28411000	-0.14491300	-1.82406800

Table S4. Cartesian coordinates of the optimized geometry for 5' (singlet state).

Ni	0.62780700	1.03877600	0.47532100	-	С	3.35071100	-3.37838600	-2.37257400
Ni	-0.69164100	-1.03643800	0.54415400		Η	4.32688100	-3.72416400	-2.73019300
Ν	2.33264200	1.36913000	-0.10571100		С	2.64033800	-2.39928500	-3.08851800
Ν	-0.43686500	-2.03491300	-0.99119600		Н	3.06367000	-1.97432600	-4.00611100
Ν	-2.50634900	-1.30506100	0.18216800		С	-4.78524300	0.92923900	2.14198600
Ν	0.11863600	2.13933900	-0.97563900		Н	-4.93309300	2.00037800	2.32240700
С	-1.57570400	-2.49655100	-1.57257600		С	-5.40980300	-1.38061100	2.53311300
С	0.82992900	-2.49354100	-1.45395700		Н	-6.04023600	-2.12845000	3.02853400
С	-2.76154900	-2.01313500	-0.94913300		0	-0.76006300	0.52377300	1.60921400
С	-3.56611300	-0.85591700	1.01499500		0	0.66566400	-1.67471000	1.72290600
С	1.39168200	-1.95333000	-2.63241300		С	0.42083700	0.56620800	2.36376100
С	-4.14972400	-2.24244000	-1.49801600		С	1.06402900	-0.71919700	2.49219900
Н	-4.83006400	-1.43799000	-1.17375400		С	3.98358700	-0.38437500	0.38224000
Н	-4.59534400	-3.19559300	-1.15065500		С	5.12724600	-0.82231600	1.06737700
Н	-4.14473700	-2.26676700	-2.60118700		Н	5.49177500	-1.84275400	0.90369500
С	-3.76849800	0.51874400	1.26866100		С	4.18269700	1.78833600	1.47030000
С	-1.56205000	-3.43748400	-2.75042700		С	3.50595200	0.92855000	0.57788900
Н	-0.87083000	-4.28000300	-2.56971900		С	5.32377000	1.33977900	2.15462900
Н	-1.21794100	-2.94420800	-3.68014500		Н	5.84256700	2.01662200	2.84352500
Н	-2.56425100	-3.85319100	-2.93855600		С	5.80197300	0.03380900	1.95433400
С	1.54859500	-3.47052100	-0.73093600		Н	6.69344800	-0.31443500	2.48764300
С	-4.39607900	-1.80244200	1.66311600		С	0.50062200	1.64263500	3.41853800
С	-5.61246400	-0.01172300	2.77755500		Н	0.05737900	2.57752600	3.03886700
Н	-6.40463100	0.31723300	3.45930300		Н	1.54834800	1.84732700	3.69917000
С	2.80003600	-3.90584900	-1.19138700		Н	-0.05065900	1.35355100	4.33566900
Н	3.34572200	-4.66962900	-0.62494200		С	2.18487200	-0.97500600	3.46153000

				-				
Н	2.55875700	-2.00175200	3.33130600		Н	3.87803800	3.59040400	-1.95119500
Н	1.83861600	-0.84325100	4.50458000		Н	3.80468800	2.09558400	-2.91078300
Н	3.01945600	-0.26856000	3.29935000		Н	4.59663800	2.08647500	-1.31626200
С	-1.19967700	2.51744300	-1.34937700		С	1.00648300	3.28835300	-3.03859700
С	-2.11307800	1.56399900	-1.84946200		Н	0.14832700	2.90488200	-3.61794400
С	-1.62492400	3.85597300	-1.18394600		Н	1.91161500	3.20547600	-3.66205100
С	-2.93254000	4.23157100	-1.52042800		Н	0.81673100	4.36683600	-2.87287100
Н	-3.24900300	5.27174800	-1.37980100		Н	1.11671100	-3.86958600	0.19141000
С	-3.41919700	1.95036400	-2.18684400		Н	0.84154200	-1.17412500	-3.17065000
Η	-4.11694000	1.20037000	-2.57650000		Н	-3.12934700	1.25061500	0.77030400
С	-3.83667500	3.28152700	-2.02571500		Н	-4.21730900	-2.86998200	1.49253100
Н	-4.85975300	3.57523900	-2.28492000		Н	-1.78691900	0.52572700	-1.96570500
С	2.43356500	2.13086700	-1.22684100		Н	-0.92125100	4.58746000	-0.77095000
С	1.16593800	2.52845800	-1.74605300		Н	3.45284800	-1.04735100	-0.30869100
С	3.74393300	2.49440400	-1.87984300	_	Н	3.80375600	2.80632000	1.61460900

Table S5. Cartesian coordinates of the optimized geometry for 6' (doublet state).

С	-0.04038500	-3.63164700	-0.47049400	-	Н	-6.78480800	-0.50837500	0.58158200
С	-1.42413800	-3.41229200	-0.36796700		С	-5.13113700	-1.73132700	1.27509100
С	0.58796600	-4.99025000	-0.64185600		Н	-5.66768500	-2.10458000	2.15371600
Н	1.53209000	-4.92107100	-1.20329700		С	-3.81610300	-2.14735000	1.04061800
Н	-0.07931800	-5.66816500	-1.19607200		С	0.71604400	1.58178900	-0.36428400
Н	0.82105900	-5.49169700	0.31565200		С	-0.65117900	1.75909800	-0.23023500
С	-2.44475300	-4.52192000	-0.40016800		С	1.82858700	2.53344000	-0.24780500
Н	-2.63936400	-4.96055200	0.59476400		С	3.09224900	2.18547500	-0.79567300
Н	-2.10891400	-5.34576900	-1.04908300		Η	3.17217400	1.25685500	-1.36572500
Н	-3.40910400	-4.16209000	-0.78682300		С	4.20680600	3.02121800	-0.63808100
С	2.09932700	-2.49260400	-0.40995900		Η	5.16347300	2.73655600	-1.08983200
С	2.74834700	-3.16992500	0.65844600		С	4.09949400	4.22358900	0.07536800
С	4.14182100	-3.14126400	0.78917700		Η	4.96883300	4.87637400	0.19807200
Н	4.61706800	-3.67732900	1.61730500		С	2.85971700	4.57486400	0.63435300
С	4.92912100	-2.42890500	-0.13211300		Η	2.76346600	5.50091500	1.21057200
Н	6.01970400	-2.42617700	-0.04393300		С	1.74681200	3.74360300	0.48590700
С	4.29492500	-1.75204300	-1.19230100		Η	0.79943900	4.02454100	0.95242600
Н	4.89794500	-1.21264800	-1.93028300		С	-1.46452700	2.98368900	-0.25235300
С	2.90524500	-1.77645800	-1.33008100		С	-1.08162800	4.14292300	-0.96749800
С	-3.10486800	-1.68045900	-0.08696000		Н	-0.14544600	4.14075400	-1.53222900
С	-3.73259200	-0.75672600	-0.94860000		С	-1.89652300	5.27787000	-0.98244900
С	-5.04694100	-0.34598000	-0.71036900		Н	-1.58026200	6.16061500	-1.54797800
Н	-5.52020600	0.36503200	-1.39485900		С	-3.12453500	5.28219300	-0.30245400
С	-5.75589100	-0.83306800	0.39807300	_	Н	-3.76348400	6.17071100	-0.32133700

С	-3.53339800	4.12852500	0.38080300	0	3.89381700	0.21132000	1.67143100
Η	-4.49865800	4.11095800	0.89778700	0	-0.35180900	0.11307300	2.55839400
С	-2.71937000	2.99164100	0.40209300	Н	4.38164100	-0.48160000	1.17949100
Η	-3.05371100	2.08229100	0.90733900	Н	3.95004500	1.01797800	1.11658200
Ν	0.69959600	-2.46986300	-0.52540700	Н	-0.64636500	0.78677500	3.19239100
Ν	-1.77451200	-2.08693400	-0.34699100	Н	-0.91554900	0.21971800	1.74582500
Na	1.68085200	-0.38446000	1.62976500	Н	-3.31777800	-2.82371900	1.74116100
Ni	-0.33427500	-0.90764700	-0.41167500	Н	-3.17222000	-0.37548000	-1.80423300
0	1.09860400	0.26809200	-0.50361800	Н	2.41005700	-1.25102500	-2.14835000
0	-1.34954800	0.59643400	-0.06131500	Н	2.14113700	-3.71658100	1.38713300

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato,; X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01; Gaussian, Inc.: Wallingford, CT, 2009.
- (2) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
- (3) F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.