Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Large, weakly-basic, bis(carboranyl)phosphines: An experimental and computational study

Electronic Supplementary Information

Part A NMR Spectra

$[\mu-2,2'-PPh-\{1-(1'-1',2'-closo-C_2B_{10}H_{10})-1,2-closo-C_2B_{10}H_{10}\}] (I)$	2
$[\mu-2,2'-PEt-\{1-(1'-1',2'-closo-C_2B_{10}H_{10})-1,2-closo-C_2B_{10}H_{10}\}] (1)$	5
$[\mu-2,2'-P(Ph)AuCl-\{1-(1'-1',2'-closo-C_2B_{10}H_{10})-1,2-closo-C_2B_{10}H_{10}\}] (2)$	9
$[\mu-2,2'-P(Et)AuCl-\{1-(1'-1',2'-closo-C_2B_{10}H_{10})-1,2-closo-C_2B_{10}H_{10}\}] (\textbf{3})$	11
$[\mu-2,2'-P(Ph)Se-\{1-(1'-1',2'-closo-C_2B_{10}H_{10})-1,2-closo-C_2B_{10}H_{10}\}] (4)$	13
$[\mu - 2, 2' - P(Et)Se - \{1 - (1' - 1', 2' - closo - C_2B_{10}H_{10}) - 1, 2 - closo - C_2B_{10}H_{10}\}]$ (5)	15

Part B Computational Studies

1. Optimised Geometries	17
2. Quantum Theory of Atoms in Molecules (QTAIM) Analysis	18
3. Calculated Indirect Spin-Spin Coupling Constants $({}^{n}J_{NN'})$	19
4. Natural Bond Orbital (NBO) Analysis	22
5. Atomic Coordinates	
1 _{DFT}	23
3 _{DFT}	25
5 _{dft}	27

Part A NMR Spectra

$[\mu-2,2'-PPh-\{1-(1'-1',2'-closo-C_2B_{10}H_{10})-1,2-closo-C_2B_{10}H_{10}\}] (I)$

¹H NMR spectrum (expansion 9.0 to 6.0 ppm):

 $^1\text{H}\{^{31}\text{P}\}$ NMR spectrum (expansion 9.0 to 6.0 ppm):

¹¹B{¹H} NMR spectrum:

³¹P{¹H} NMR spectrum:

4

¹H NMR spectrum (expansion 3.0 to 0.0 ppm):

 ${}^{1}H{}^{31}P{}$ NMR spectrum (expansion 3.0 to 0.0 ppm):

³¹P{¹H} NMR spectrum:

HMBC ¹H-³¹P NMR spectrum:

¹H NMR spectrum (expansion 9.3 to 6.3 ppm):

³¹P{¹H} NMR spectrum:

¹H NMR spectrum (expansion 3.5 to 0.5 ppm):

³¹P{¹H} NMR spectrum:

¹H NMR spectrum (expansion 8.6 to 7.3 ppm):

³¹P{¹H} NMR spectrum:

¹H NMR spectrum (expansion 3.0 to 1.0 ppm):

³¹P{¹H} NMR spectrum:

Part B Computational Studies

1. Optimised Geometries

Table 51 Scienced optimised bond distances (in 1) for 1pri, 5pri, and 5pr	Table S1	Selected optimised bond	d distances (in Å) for	1_{DFT} , 3_{DFT} , and 5_{DFT}
--	----------	-------------------------	------------------------	---------------------------------------

Compound	Exp.	Calc.
1 _{dft}		
P1C2	1.870(5)	1.889
P1C2'	1.890(5)	1.892
P1-C11	1.844(5)	1.852
C1–C1'	1.533(7)	1.528
3dft		
P1–Au1	2.2181(11)	2.211
Au1–Cl1	2.2910(11)	2.269
P1C2	1.860(4)	1.869
Р1-С2'	1.883(4)	1.872
P1-C11	1.816(4)	1.828
C1–C1'	1.538(5)	1.530
5dft		
P1-Se1	2.0801(7)	2.075
P1C2	1.879(2)	1.885
P1C2'	1.893(2)	1.890
P1-C11	1.822(2)	1.831
C1–C1'	1.543(3)	1.532
P1-C2 P1-C2' P1-C11 C1-C1'	1.879(2) 1.893(2) 1.822(2) 1.543(3)	1.885 1.890 1.831 1.532

2. Quantum Theory of Atoms in Molecules (QTAIM) Analysis

- Fig. S1 Molecular graph for 1_{DFT} with atomic numbering scheme (BP86-D3/def2-TZVP/def2-SVP)], with stationary points and bond paths. Bond critical points (BCP) shown in green, ring critical points (RCP) in red and cage critical points in blue. Selected stationary points have been cloaked for clarity. Arrows highlight selected BCPs representing dihydrogen bonding.
- **Table S2**Calculated QTAIM parameters (a.u.) for selected BCPs in 1_{DFT}

 $(\rho(r)$ electron density; $\nabla^2 \rho(r)$ Laplacian of electron density; $\varepsilon =$ ellipticity).

Compound	$\rho(\mathbf{r})$	$\nabla^2 \rho(\mathbf{r})$	3
1dft			
H11PX–H3	0.008	+0.031	0.661
H11PY-H6'	0.011	+0.038	0.363
H11Q-H7	0.007	+0.025	1.139
H12R-H11	0.007	+0.022	0.146

3. Calculated Indirect Spin-Spin Coupling Constants ("J_{NN}")

Computed coupling constants in **5**_{DFT} are in very good agreement with their experimental counterparts. The slight increase observed for ${}^{3}J_{PH}$ in going from 1 (calc. 26.2 Hz; exp.: 23.0 Hz) to 5 (calc.: 29.8 Hz; exp.: 25.9 Hz) is well reproduced by the calculations. The vicinal ${}^{3}J_{HH}$ coupling (calc.: 9.5 Hz; exp.: 7.6 Hz) remains unaffected by bonding of the P lone pair to Se. In contrast, a notable change in the spin-spin coupling pattern is observed for the averaged geminal coupling ${}^{2}J_{PH}$, whose calculated value increases to -14.1 Hz (exp.: 11.6 Hz). These changes closely follow the general trends observed for P(III) and P(V) compounds, and can be understood in terms of bonding orbital contributions to the coupling pathways, following Jameson's and Gutowsky's model.⁶⁴ The spin-spin coupling constant for directly bonded nuclei, i.e. P-C bonds in the present case, can be expressed in terms of a contact contribution between nuclear and electronic spins, i.e. ${}^{1}J_{PC} \sim \alpha_{P}\alpha_{C}$. Each individual term α_{N} has contributions from two parts, a direct Fermi contact term due to s electron density of bonding electrons at the nucleus, and an indirect Fermi contact interaction term due to polarization of s electrons in the core. In the case of 1_{DFT} , the phosphorous lone pair contains a significant degree of 3s character (52%), as confirmed by an analysis of the compound's localized natural bond orbitals (NBO, see Table below). The direct P bonds to C are hence closer to p^3 than to sp^3 , with ~84% p character. This is reflected in the direct ${}^{1}J_{PC}$ coupling constant, where the negative sign associated with all three direct P–C couplings $({}^{1}J_{PC} = -16 \text{ Hz and } -90 \text{ Hz})$ is diagnostic of s core polarization by the p bonding orbitals (a term which is usually negative). A higher s character in a bond increases the (large and positive) contribution from the direct Fermi contact term. In 5_{DFT} the P bonds to C are much closer to sp^3 , as reflected in the NBO compositions (21–26% s, 73–78% p), paralleled by a notably reduced phosphorus s character in the P-Se σ -bond (32% s, 67% p). Therefore, the electron distribution around P changes as the lone pair is replaced by Se, and the coupling mechanism changes from core polarization dominant over direct Fermi contact in P(III) to the opposite in P(V). This is also clearly reflected in the notably positive ${}^{1}J_{PC}$ coupling constants in 5_{DFT} (27–64 Hz). Following the same argument as above, but considering that the geminal coupling constant ${}^{2}J_{PH}$ depends on a third term taking into account the transfer of electron spin information along the P-C-H coupling pathway, the expression for the coupling constant now becomes ${}^{2}J_{PH} \sim \alpha_{P}\gamma_{PCH}\alpha_{H}$. With the γ_{PCH} term being negative, the sign of the ${}^{2}J_{PH}$ coupling constant is opposite to that of ${}^{1}J_{PC}$ since ${}^{2}J_{PH} \sim (\alpha_{P})(-)(+)$. This is indeed found to be the case for the computed coupling constants, with ${}^{2}J_{PH}$ being equal to -14.9 Hz and -13.3 Hz for the P-H11P and P-H11Q couplings. The observed increase of the modulus $|^2 J_{PH}|$ is a direct result of mixing higher s character into the P-C bonds.

64 (a) C. J. Jameson, *J. Am. Chem. Soc.*, 1969, **91**, 6232; (b) C. J. Jameson and H. S. Gutowsky, *J. Chem. Phys.*, 1969, **51**, 2790.

Compound	$^{2}J_{\mathrm{PH}}$	$^{3}J_{\rm PH}$	$^{3}J_{\rm HH}$
1dft			
FC	-4.84 / +4.85	_	_
SD	-0.13 / +0.64	_	_
PSO	-0.67 / -0.15	_	_
DSO	+0.16 / +0.23	_	_
Total	-5.48 / +5.56	26.19 (avg.)	9.66 (avg.)
3dft			
FC	-19.52 / -7.05	_	_
SD	+0.14 / +0.53	_	_
PSO	-0.90 / -0.61	_	_
DSO	+0.42 / +0.47	_	_
Total	-19.87 / -6.65	31.18 (avg.)	9.57 (avg.)
5 _{dft}			
FC	-14.92 / -13.64		
SD	+0.24 / +0.47		
PSO	-0.86 / -0.80		
DSO	+0.62 / +0.67		
Total	-14.91 / -13.29	29.76 (avg.)	9.52 (avg.)

Table S3Calculated NMR spin-spin coupling constants (Hz) at the BHandHLYP/aug-cc-pVTZ-
J/cc-pVDZ (+ECP for Au) level of theory.

Fig. S2 Schematic representation of ${}^{1}J_{PC}$, ${}^{2}J_{PH}$ and ${}^{3}J_{HH}$ coupling constants (red, Hz) in $\mathbf{1}_{DFT}$ and $\mathbf{5}_{DFT}$, along with key NBO orbital compositions of relevant bonding orbitals along the main coupling pathways. Approximate percentage contributions are given for P in P–X bonds and the lone pair, as well as C in C–H bonds. For comparison, results for PMe₃ and SePMe₃ are also included.

4. Natural Bond Orbital (NBO) Analysis

Compound	s character	<i>p</i> character	contribution
1 _{DFT}			
LP(P)	52.24%	47.72%	100.00% P
σ(P–C2)	15.33%	83.88%	28.93% P
	34.24%	65.33%	71.07% C
σ(P-C2')	15.18%	84.03%	28.85% P
	34.39%	65.19%	71.15% C
σ(P–C11)	17.30%	82.00%	39.15% P
	23.76%	75.75%	60.85% C
σ(C11–H11P)	24.33%	75.48%	61.99% C
	99.88%		38.01% H
σ(C11–H11Q)	22.47%	77.30%	62.04% C
	99.88%		37.96% H
5 _{DFT}			
σ(P–Se)		67.26%	55.36% P
	31.66%		
	13.53%	85.64%	44.64% Se
σ(P–C2)	21.22%	77.90%	31.09% P
	33.89%	65.75%	68.91% C
σ(P–C2')	20.98%	78.13%	30.84% P
	34.19%	65.44%	69.16% C
σ(P–C11)	26.19%	73.04%	41.63% P
	24.17%	75.43%	58.37% C
σ(C11–H11P)	23.65%	76.11%	62.61% C
	99.88%		37.39% H
σ(C11–H11Q)	22.37%	77.37%	62.86% C
	99.98%		37.14% H

Table S4Compositions of key natural bond orbitals from NBO analysis .

5. Atomic Coordinates

1_{dft}

Р	-0.08362	1.78983	-0.84056
С	0.86768	-0.81190	0.11531
С	1.37232	0.69482	-0.33783
В	1.56206	0.24685	1.32854
Н	0.88382	0.76849	2.14895
В	1.91909	-1.49099	1.28902
Н	1.43491	-2.19540	2.13204
В	1.96073	-2.01734	-0.42050
Н	1.50427	-3.08016	-0.74160
В	1.63494	-0.60989	-1.45120
Η	0.99086	-0.64067	-2.44707
В	2.82358	1.14403	0.48480
Η	2.96940	2.30311	0.77695
В	3.21915	-0.27048	1.51826
Η	3.74114	-0.12557	2.59611
В	3.48766	-1.67414	0.44788
Η	4.23833	-2.56993	0.74670
В	3.29150	-1.12499	-1.23841
Η	3.86400	-1.61020	-2.18263
В	2.86944	0.62003	-1.20699
Η	3.02612	1.41984	-2.09322
С	-0.15629	3.00799	0.55275
Η	-0.42302	2.51227	1.49538
Η	0.87206	3.38769	0.66002
С	-1.12638	4.14761	0.21853
Η	-2.15373	3.77825	0.09473
Н	-0.83748	4.66148	-0.70939
Н	-1.13390	4.88825	1.03078
В	4.05165	-0.04057	-0.04423

Η	5.21574	0.26962	-0.10824
С	-0.65635	-0.92370	0.10809
С	-1.37369	0.50501	-0.32605
В	-1.44464	-0.80145	-1.45970
Η	-0.80504	-0.71139	-2.45506
В	-1.56292	-2.26305	-0.45957
Η	-0.95857	-3.24206	-0.80226
В	-1.60068	-1.77257	1.25999
Η	-1.01968	-2.41469	2.09140
В	-1.49459	-0.00323	1.33289
Η	-0.89656	0.58128	2.17407
В	-2.84515	0.23062	-1.19477
Η	-3.11384	1.01673	-2.06632
В	-3.00937	-1.55574	-1.26322
Η	-3.50549	-2.09924	-2.21881
В	-3.12507	-2.16136	0.41020
Η	-3.73873	-3.16150	0.69014
В	-3.06101	-0.75493	1.50970
Η	-3.59779	-0.70776	2.58895
В	-2.87184	0.72330	0.50716
Η	-3.18172	1.84009	0.82922
В	-3.91844	-0.61599	-0.04904
Η	-5.11502	-0.47550	-0.11122

3_{dft}

Р	0.34319	-0.00219	0.88313
С	-2.17072	-0.75345	-0.31945
С	-0.83627	-1.37672	0.42358
В	-2.33610	-1.45371	1.28500
Η	-2.48915	-0.76400	2.23701
В	-3.55464	-1.70612	0.01945
Η	-4.60848	-1.14085	0.12069
В	-2.71726	-1.79792	-1.56002
Η	-3.20241	-1.29434	-2.53524
В	-0.97303	-1.60630	-1.29008
Η	-0.23739	-1.00562	-1.99941
В	-1.20140	-2.80679	1.31500
Η	-0.60044	-2.99563	2.34084
В	-2.95663	-3.06601	1.03714
Η	-3.65720	-3.54230	1.89518
В	-3.20468	-3.29940	-0.71588
Η	-4.10129	-3.98085	-1.14652
В	-1.60963	-3.21648	-1.51460
Η	-1.32482	-3.80250	-2.52852
В	-0.37295	-2.90034	-0.25152
Η	0.80529	-3.13395	-0.30786
С	0.35779	0.06752	2.70985
Η	-0.62973	0.39403	3.06235
Η	0.50095	-0.97435	3.03695
С	1.48313	0.97161	3.22488
Η	2.46451	0.61576	2.88256
Η	1.47846	0.97616	4.32350
Η	1.35879	2.00679	2.88076
В	-1.75161	-3.98309	0.08992
Η	-1.57533	-5.16429	0.25493
С	-2.12926	0.77477	-0.39070

С	-0.76716	1.39273	0.31326
В	-0.87515	1.47820	-1.41273
Η	-0.15929	0.78356	-2.05346
В	-2.60355	1.73210	-1.72917
Η	-3.10048	1.17088	-2.66629
В	-3.46466	1.82318	-0.16355
Η	-4.54709	1.32252	-0.02924
В	-2.27660	1.61905	1.13761
Η	-2.49174	1.02447	2.14112
В	-0.22291	2.82725	-0.48079
Η	0.96653	2.99489	-0.53761
В	-1.42518	3.09282	-1.78800
Η	-1.09768	3.57244	-2.84403
В	-3.02306	3.32569	-1.02770
Η	-3.87877	4.01068	-1.52999
В	-2.80952	3.23313	0.74330
Η	-3.49511	3.81604	1.54587
В	-1.07429	2.91007	1.07418
Η	-0.48554	3.15694	2.09309
В	-1.54771	4.00295	-0.25772
Η	-1.31237	5.18362	-0.19279
Au	2.29653	-0.09427	-0.14811
Cl	4.30730	-0.19117	-1.19458

5_{dft}

Р	-0.14921	1.38072	0.32417
С	0.97319	-1.26785	-0.05683
С	1.39350	0.30361	0.20909
В	1.65612	-0.82041	1.49896
Н	0.97629	-0.75896	2.46797
В	2.09765	-2.33232	0.68121
Н	1.67906	-3.36530	1.12661
В	2.10671	-2.03597	-1.08274
Н	1.69533	-2.87010	-1.84128
В	1.67068	-0.33856	-1.37609
Н	0.98983	0.04139	-2.26838
В	2.84208	0.43508	1.13678
Η	2.92847	1.35014	1.91420
В	3.34279	-1.26498	1.42416
Н	3.89177	-1.58730	2.44857
В	3.64228	-2.02226	-0.16466
Η	4.44788	-2.90861	-0.30613
В	3.35803	-0.78962	-1.42594
Η	3.92231	-0.76631	-2.49121
В	2.85152	0.72897	-0.61238
Η	2.92873	1.84693	-1.04644
С	-0.24097	1.91938	2.07181
Η	-0.43771	1.03179	2.68799
Η	0.77206	2.27611	2.31343
С	-1.28675	3.01324	2.29200
Η	-1.08391	3.88119	1.65111
Η	-1.26243	3.33481	3.34258
Η	-2.29890	2.65322	2.06587
В	4.10591	-0.31088	0.12147
Н	5.24936	0.06610	0.19200
С	-0.54535	-1.46462	-0.10232

С	-1.36626	-0.05569	0.15361
В	-1.39333	-0.70779	-1.44764
Η	-0.79296	-0.13832	-2.29582
В	-1.39365	-2.46745	-1.20291
Η	-0.74693	-3.14757	-1.95097
В	-1.39634	-2.80028	0.55368
Η	-0.74947	-3.70356	1.00774
В	-1.39265	-1.24892	1.41375
Η	-0.79366	-1.05763	2.41916
В	-2.84301	0.00283	-0.73312
Η	-3.18128	1.07571	-1.15603
В	-2.90488	-1.57161	-1.59435
Η	-3.40457	-1.66362	-2.68777
В	-2.92544	-2.86927	-0.36906
Η	-3.47001	-3.92752	-0.56447
В	-2.90509	-2.10426	1.24467
Η	-3.40149	-2.58245	2.23444
В	-2.84093	-0.32527	1.01061
Н	-3.19333	0.51167	1.79921
В	-3.82349	-1.34047	-0.08164
Н	-5.02734	-1.26855	-0.06774
Se	-0.30112	2.85867	-1.12457