Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Hydrogen-Bridged Bis(silylene) Complexes of Ruthenium and Iron: Synthesis, Structures and Multi-Centre Bonding Interactions at the M-Si-H-Si Four-Membered Ring

Hisako Hashimoto,* Katsuto Komura, Takatoshi Ishizaki, Yuto Odagiri and Hiromi Tobita*

To whom correspondence should be addressed. E-mail: hhashimoto@m.tohoku.ac.jp (H.H.); tobita@m.tohoku.ac.jp (T.H.)

Departmet of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.

Contents

- **1. Experimental Procedures**
- 2. X-ray Crystal Structure Analysis
- **3.** Theoretical Calculations
- 4. References

1. Experimental Procedures

1-1 General procedures

All manipulations were performed using either standard Schlenk techniques, vacuum line techniques, or in a drybox under an argon atmosphere. Anhydrous tetrahydrofuran (THF) and diethyl ether were purchased from Kanto Chemical Co., Inc., and used without further purification. Toluene and hexane were dried over sodium benzophenone ketyl and distilled under nitrogen atomosphere. Benzene- d_6 (C₆D₆) was dried over calcium hydride and then with molecular sieves. Toluene- d_8 was dried over calcium hydride and then with a potassium mirror, and transferred into a reaction vessel under vacuum. LiAlH₄ was purchased from Aldrich Chemicals and used as it was received. Cp*Ru(CO)(py)Me,^{S1} Cp*Fe(CO)(py)Me,^{S2} Ph₂^tBuSiCl^{S3} and ^tBuMe₂SiCl^{S4} were prepared by the literature procedures. ¹H, ¹³C, and ²⁹Si NMR spectra were obtained by a Bruker AVANCE-300 or a Bruker AVANCE-400 spectrometers. The ¹H or ¹³C NMR chemical shifts were referenced to the residual proton (C₆D₅H in C₆D₆: δ = 7.15, C₆D₅CD₂H in C₆D₅CD₃: δ = 2.09) and the carbon (C₆D₆: $\delta = 128.0$, C₆D₅CD₃: $\delta = 20.4$) of deuterated solvents. The ²⁹Si{¹H} NMR spectra were referenced to an external standard of tetramethylsilane ($\delta = 0.0$). The coupling constant J(Si-Si) was measured using the INEPT–INADEQUATE pulse sequence^{S5} on a Bruker AVANCE-400 spectrometer. IR spectra were recorded on a HORIBA FT-730 spectrometer. Mass spectra were recorded on a Shimadzu GCMS-QP5050A spectrometer. High resolution mass spectroscopy and elemental analysis were performed at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University.

1-2 Synthesis of H2'BuSiSiMe2'Bu

 $H_2'BuSiSiMe_2'Bu$ was prepared by applying the synthetic method for $H_3SiSiMe_2'Bu,^{S6}$ namely chlorination of $Ph_2'BuSiSiMe_2'Bu$ followed by reduction of the resulting $Cl_2'BuSiSiMe_2'Bu$ with LiAlH₄ (vide infra). Although $Ph_2'BuSiSiMe_2'Bu$ has already been reported in the literature,^{S7} we synthesized it in much higher yield by the following method.

Ph₂'BuSiSiMe₂'Bu. A dark green solution of Ph₂'BuSiLi, which was prepared by the reaction of Ph₂'BuSiCl (24.3 g, 0.0886 mol) with a finely cut lithium wire (6.12 g, 0.882 mol) in THF (44 mL) for 2 h at room temperature, was added to 'BuMe₂SiCl (13.1g, 0.0872 mol) in THF (45 mL) at room temperature. The resulting mixture was stirred overnight at room temperature and was hydrolyzed with water. To the mixture was added diethyl ether, and the organic layer was separated. The aqueous layer was extracted with diethyl ether. All diethyl ether solutions were combined and the combined solution was washed with saturated NH₄Cl aq, water, and then saturated NaCl aq. The organic layer was dried over anhydrous MgSO₄, and filtered. Evaporation of the filtrate in vacuo gave Ph₂'BuSiSiMe₂'Bu as colorless crystals in 88% yield (27.3 g, 0.0768 mol). For elemental analysis, the product was purified by recrystallization from hexane at – 30 °C to give colorless crystals. ¹H NMR (300 MHz, C₆D₆): δ 0.29 (s, 6H, Me), 0.79 (s, 9H, SiMe₂'Bu), 1.15 (s, 9H, Ph₂'BuSi), 7.15–7.21 (m, 6H, *m*-, *p*-Ph), 7.70–7.75 (m, 4H, *o*-Ph); ²⁹Si{¹H} NMR (59.6 MHz, DEPT, C₆D₆): δ –11.2 (Ph₂'BuSi), -9.0 (SiMe₂'Bu); Mass (EI, 70 eV): *m*/z 354 (M⁺, 7), 297 (M⁺-'Bu, 45), 241 (M⁺ – 2'Bu, 12), 197 (M⁺–SiMe₂'Bu, 48), 135 (PhSiSi⁺, 100), 73 (SiMe₃⁺, 33). Anal. Calcd. for C₂₂H₃₄Si₂: C, 74.50; H, 9.66. Found: C, 74.65; H, 9.68%.

 $Cl_2'BuSiSiMe_2'Bu$. Dry HCl gas generated by addition of concentrated sulfuric acid to sodium chloride, was injected into a solution of Ph₂'BuSiSiMe₂'Bu (20.1 g, 0.0568 mol) in toluene (98 mL) containing a catalytic amount of freshly sublimed AlCl₃. The reaction was monitored by gas chromatography. After 1

h, the reaction mixture was quenched with a drop of dry acetone, and then the solvent was removed in vacuo. By molecular distillation (65 °C / 0.3 mmHg) of the residue, $Cl_2'BuSiSiMe_2'Bu$ was obtained in 83% yield (12.7 g, 0.0469 mol) as a colorless liquid. This sample was used for the next reaction without further purification. ¹H NMR (300 MHz, C₆D₆): δ 0.15 (s, 6H, Me), 0.98 (s, 9H, SiMe_2'Bu), 1.03 (s, 9H, Cl_2'BuSi); ²⁹Si{¹H} NMR (59.6 MHz, C₆D₆): δ -3.4 (SiMe_2'Bu), 36.5 (Cl_2'BuSi).

H₂'**BuSiSiMe**₂'**Bu.** A solution of Cl₂'BuSiSiMe₂'Bu (11.3 g, 0.0416 mol) in diethyl ether (25 mL) was added dropwise to a suspension of LiAlH₄ (3.18 g, 0.0838 mol) in diethyl ether (60 mL) at room temperature. The reaction mixture was refluxed for 6 h and then hydrolyzed with 0.5 M sulfuric acid at 0 °C. The mixture was moved into a separatory funnel, diethyl ether was added to it, and the organic layer was separated. The aqueous layer was extracted with diethyl ether. All diethyl ether solutions were combined and the combined one was washed with saturated NaHCO₃ aq, water, and saturated NaCl aq. The solution was dried over anhydrous Na₂SO₄, and filtered. The solvent was removed from the filtrate by continuous distillation, and then the residue was distilled under reduced pressure (101 °C/28 mmHg). H₂'BuSiSiMe₂'Bu was obtained in 77% yield (6.51 g, 0.0321 mol) as a colorless liquid. ¹H NMR (300 MHz, C₆D₆): δ 0.13 (s, 6H, Me), 0.95 (s, 9H, SiMe₂'Bu), 1.10 (s, 9H, SiH₂'Bu), 3.69 (s, ¹J_{SiH} = 171.4 Hz, 2H, SiH); ¹³C{¹H} NMR (75.5 MHz, C₆D₆): δ -4.1 (Me), 16.9 (SiH₂CMe₃), 17.4 (SiMe₂CMe₃), 27.1 (SiMe₂CMe₃), 30.4 (H₂(CMe₃)Si); ²⁹Si{¹H} NMR (59.6 MHz, C₆D₆): δ -41.9 (SiH₂'Bu), -6.0 (SiMe₂'Bu); Mass (EI, 70 eV): *m*/*z* 202 (M⁺), 115 (M⁺-SiH₂'Bu), 85 (M⁺- SiMe₂'Bu – 2H); Exact mass for C₁₀H₂₆Si₂: 202.1573. Found: 202.1570.

1-3 Synthesis of Cp*Ru(CO){('Bu)MeSi···H···SiMe('Bu)} (2). To a solution of Cp*Ru(CO)(py)Me (544 mg, 1.52 mmol) in toluene (12 mL) in a 50 mL Schlenk tube was added H₂'BuSiSiMe₂'Bu (323 mg, 1.60 mmol) and then BPh₃ (350 mg, 1.45 mmol). The mixture was stirred for 2 h at room temperature. During that time, a white precipitate of py BPh₃ was formed. After filtration of py BPh₃, all volatiles were evaporated from the filtrate and the residue was recrystallised from hexane at -30 °C to give yellow crystals of 2 (472 mg, 1.01 mmol, 67% yield) as a mixture of *cis*- and *trans*-isomers. The ratio of *cis*- and *trans*isomers was determined to be cis : trans = 3 : 1 by ¹H NMR. ¹H NMR (400 MHz, C₆D₆, 300 K, δ) *cis*-2: 0.46 (d, ${}^{3}J_{\text{HH}} = 2.8 \text{ Hz}$, 6H, SiMe), 1.20 (s, 18H, SitBu), 1.89 (s, 15H, Cp*), 3.34 (sept, ${}^{3}J_{\text{HH}} = 2.8 \text{ Hz}$), 1H, $Si \cdot H \cdot Si$; trans-2 :0.56 (d, ${}^{3}J_{HH} = 2.4 \text{ Hz}$, 3H, SiMe), 0.88 (d, ${}^{3}J_{HH} = 2.4 \text{ Hz}$, 3H, SiMe), 1.08 (s, 9H, Si'Bu), 1.13 (s, 9H, Si'Bu), 1.91 (s, 15H, Cp*), 3.42 (sept, ${}^{3}J_{HH} = 2.4$ Hz, 1H, Si··H···Si); ¹H NMR (400 MHz, toluene- d_8 , 300 K, δ); cis-2 : 0.46 (d, ${}^{3}J_{HH} = 2.8$ Hz , 6H, SiMe), 1.17 (s, 18H, SitBu), 1.90 (s, 15H, Cp*), 3.35 (sept, ${}^{3}J_{HH} = 2.8$ Hz, $J_{SiH} = 21.6$ Hz (determined by ¹H homodecoupling), 1H, Si··H···Si); *trans-2*: 0.55 (d, ${}^{3}J_{HH} = 2.8 \text{ Hz}$, 3H, SiMe), 0.88 (d, ${}^{3}J_{HH} = 2.4 \text{ Hz}$, 3H, SiMe), 1.08 (s, 9H, Si'Bu), 1.13 (s, 9H, Si'Bu), 1.91 (s, 15H, Cp*), 3.42 (sept, ${}^{3}J_{HH} = 2.4$ Hz, 1H, Si \cdot H \cdot Si); ${}^{13}C{}^{1}H{}$ NMR (100.6 MHz, C₆D₆, 300K, *d*) *cis*-2: -2.4 (SiMe), 11.6 (C₅Me₅), 24.2 (CMe₃), 29.2 (CMe₃), 96.2 (C₅Me₅), 210.7 (CO); trans-2: -2.6 (SiMe), 3.0 (SiMe), 11.9 (C₅Me₅), 24.3 (CMe₃), 25.3 (CMe₃), 29.1 (CMe₃), 96.3 (C₅Me₅), 210.4 (CO); ²⁹Si{¹H} NMR (79.5 MHz, C₆D₆, DEPT, 300 K, δ) *cis*-**2** : 91.4 (SiMe'Bu); *trans*-**2** : 55.4 (SiMe'Bu), 113.8 (SiMe^tBu); ²⁹Si{¹H} NMR (79.5 MHz, toluene-d₈, DEPT, 300 K, δ) cis-2: 91.3 (SiMe^tBu); trans-2: 55.8 (SiMe'Bu, J_{SiSi} was not obtained because of low intensity for this signal), 113.7 (SiMe'Bu, $J_{SiSi} = 33.7$ Hz (determined by INEPT-INADEQUATE measurement); IR (hexane, a mixture of cis-/trans-isomers, cm⁻¹): 1911 (v_{CO} , s); Mass (EI, 70 eV, a mixture of *cis-/trans*-isomers): m/z 466 (M⁺, 48), 409 (M⁺ - ^tBu, 100); Anal. Calcd. for C₂₁H₄₀OSi₂Ru: C: 54.15, H: 8.66, Found: C: 54.06, H: 8.64%.

1-4 Synthesis of Cp*Fe(CO){('Bu)MeSi···H···SiMe('Bu)} (3). In a manner similar to that described in 1-3, Cp*Fe(CO){('Bu)MeSi···H···SiMe('Bu)} **(3)** was prepared in 87% yield (987 mg, 2.37 mmol) using Cp*Fe(CO)(py)Me (804 mg, 3.05 mmol), H₂'BuSiSiMe₂'Bu (624 mg, 3.08 mmol) and BPh₃ (658 mg, 2.72 mmol). ¹H NMR (400 MHz, C₆D₆, 300 K, δ) 0.47 (d, ³*J*_{HH} = 2.8 Hz , 6H, Si<u>Me</u>), 1.20 (s, 18H, Si'<u>Bu</u>), 1.75 (s, 15H, Cp*), 3.65 (sept, ³*J*_{HH} = 2.8 Hz, *J*_{SiH} = 19.2 Hz (determined by¹H homodecoupling), 1H, Si··H···Si); ²⁹Si{¹H} NMR (79.5 MHz, C₆D₆, DEPT, 300 K, δ) 102.7 (SiMe'Bu); ¹³C{¹H} NMR (100.6 MHz, C₆D₆, 300 K, δ) -2.4 (Si<u>Me</u>), 11.4 (C₅*Me*₅), 25.1 (*C*Me₃), 30.0 (*CMe*₃), 90.9 (*C*₅Me₅), 223.0 (CO); IR (hexane, cm⁻¹) 1895 (*v*_{CO}, vs); MS (EI, 70 eV) *m/z* 420 (M⁺, 100), 363 (M⁺–^{*t*}Bu, 56); Calcd. for C₂₁H₄₀OSi₂Fe : C: 59.97, H: 9.59, Found: C: 59.90, H: 9.52.

Fig. S1 ¹H-²⁹Si{¹H} COSY NMR spectrum of Ph₂'BuSiSiMe₂'Bu (300, 59.6 MHz, C₆D₆, 298 K).

Fig. S2 ¹H NMR spectrum of H_2 'BuSiSiMe₂'Bu (300 MHz, C₆D₆, 298 K).

Fig. S3 ${}^{13}C{}^{1}H$ NMR spectrum of H_2 'BuSiSiMe₂'Bu (100.6 MHz, C₆D₆, 300 K).

S5

Fig. S5 ¹H NMR spectrum of Cp*Ru(CO){('Bu)MeSi···H···SiMe('Bu)} (2) (400 MHz, C₆D₆, 300 K).

Fig. S6 ¹H homo-decoupling NMR spectrum of 2 (400 MHz, toluene- d_8 , 300 K).

Fig. S7 ¹³C{¹H} NMR spectrum of Cp*Ru(CO){('Bu)MeSi \cdots H \cdots SiMe('Bu)} (2) (100.6 MHz, C₆D₆, 300 K).

Fig. S8 ¹H-¹³C{¹H} NMR spectrum of Cp*Ru(CO){('Bu)MeSi···H···SiMe('Bu)} (2) (a) HSQC and (b) HMBC methods (400, 100.6 MHz, C₆D₆, 300 K).

図3-4 Cp*Ru(CO)(^tBuMeSi…H…SiMe^tBu) (**15**)の²⁹Si{¹H} NMRスペクトル (79.5 MHz, C₆D₆, 300 K)

Fig. S9 ²⁹Si{¹H} NMR spectrum of Cp*Ru(CO){('Bu)MeSi···H···SiMe('Bu)} (2) (79.5 MHz, C₆D₆, 300 K). The ²⁹Si{¹H} INEPT-INADEQUATE signal at 113.8 ppm for *trans*-2 is inserted in the square: The corresponding signal was not clearly observed at 55.4 ppm.

Fig. S11 1 H homodecoupling NMR spectrum of 3 (400 MHz, C₆D₆, 300 K).

(100.6 MHz, C₆D₆, 300 K).

Fig. S13 ²⁹Si{¹H} NMR spectrum of Cp*Fe(CO){('Bu)MeSi \cdots H \cdots SiMe('Bu)} (3) (79.5 MHz, C₆D₆, 300 K).

2. X-ray Crystal Structure Analysis of cis-2 and 3

Single crystals suitable for X-ray diffraction measurement of *cis*-2 and 3 were coated with a layer of paraffin oil and were mounted on a nylon loop, and held at a position under a cold stream of N₂ on the diffractometer. Diffraction measurements were made on a RIGAKU RAXIS-RAPID Imaging Plate Diffractometer with graphite monochromated Mo-K α radiation about 150 K. Numerical absorption collection were made using the program NUMBAS.⁵⁸ The structures were solved by Patterson and Fourier transform methods (SHELXS-97)^{S9a} and refined by full matrix least-square technique on F^2 with SHELXL-97,^{S9b} using Yadokari-XG 2009 software^{S10} as a graphical user interface. The positions of the bridging hydrogen atoms for both complexes *cis*-2 and 3 were found from difference Fourier electron density map and refined isotropically. All other hydrogen atoms were placed at their geometrically calculated positions and refined riding on the corresponding carbon atoms with isotropic thermal parameters. All other non-hydrogen atoms were refined anisotropically. Crystallographic data of *cis*-2 and 3 are summarized in Tables S1 and S2, respectively. Crystallographic information has been deposited with the Cambridge Crystallographic Data Centre: CCDC 1530379 (*cis*-2), CCDC 1530380 (3).

Empirical formula	C ₂₁ H ₄₀ ORuSi ₂		
Formula weight	465.78		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 8.3493(2) Å	$\alpha = 98.5709(10)^{\circ}$	
	b = 9.67910(10)Å	$\beta = 92.1420(9)^{\circ}$	
	c = 16.9592(2) Å	$\gamma = 114.1722(15)^{\circ}$	
Volume	1229.02(4) Å		
Z	2 3		
Density (calculated)	1.259 Mg/m		
Absorption coefficient	0.742 mm^{-1}		
F(000)	492 3		
Crystal size	0.31 x 0.16 x 0.14 mm ⁻		
Theta range for data collection	1.22 to 27.48°		
Index ranges	$-10 \le h \le 10, -11 \le k \le 12, -22 \le l \le 21$		
Reflections collected	11939		
Independent reflections	5607 [$R(int) = 0.0446$]		
Completeness to theta = 27.48°	99.4 %		
Max. and min. transmission	0.9033 and 0.8026	_2	
Refinement method	Full-matrix least-squares on	F	
Data / restraints / parameters	5607 / 0 / 243		
Goodness–of–fit on F	1.143		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0429, wR2 = 0.0872		
R indices (all data)	R1 = 0.0539, wR2 = 0.0908		
Largest diff. peak and hole 0.630 and -0.504 e.A			
$R1 = \sum \Pi Fo - Fc / \sum Fo . wR2 = \left[\sum \left[w(Fo^2 - Fc^2)^2 \right] / \sum \left[w(Fo^2)^2 \right] \right]^{0.5}, \text{ calcd. } w = 1 / \left[2(Fo^2) + (0.0277P)^2 + 2.3052P \right] \text{ where } P$			
$=(Fo^{2}+2Fc^{2})/3.$			

able S2 Crystallographic	c data of Cp*Fe(CO){	(^t Bu)MeSi····H···	$SiMe(^{t}Bu)$ (3)

Table 52 Crystanographic data of Cp Te(CO){	(Du) Mest I' Silvie(Du) }	(\mathbf{J})	
Empirical formula	$C_{21}H_{40}FeOSi_2$		
Formula weight	420.56		
Temperature	150(2) K		
Wavelength	0.71073 Å		
Crystal system	triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	a = 8.3327(4) Å	$\alpha = 98.2428(15)^{\circ}$	
	b = 9.4416(7) Å	$\beta = 92.326(3)^{\circ}$	
	c = 16.9080(12) Å	$\gamma = 114.276(3)^{\circ}$	
Volume	1192.74(14) Å ³		
Ζ	2		
Density (calculated)	1.171 Mg/m^3		
Absorption coefficient	0.739 mm^{-1}		
F(000)	456		
Crystal size	$0.27 \text{ x } 0.24 \text{ x } 0.08 \text{ mm}^3$		
Theta range for data collection	1.22 to 27.48°.		
Index ranges	$-10 \le h \le 10, -12 \le k \le 12, -21 \le l \le 21$		
Reflections collected	15181		
Independent reflections	5394 [R(int) = 0.0299]		
Reflections with $I > 2.0\sigma(I)$	4944		
Completeness to theta = 27.48°	98.5 %		
Max. and min. transmission	0.9432 and 0.8253		
Refinement method	Full-matrix least-squares on F	2	
Data / restraints / parameters	5394 / 0 / 243		
Goodness–of–fit on F^2	1.081		
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0324, wR2 = 0.0800		
R indices (all data)	R1 = 0.0380, wR2 = 0.0824		
Largest diff. peak and hole	$0.680 \text{ and } -0.314 \text{ e.}\text{\AA}^{-3}$		
D1 SHE $ E /S E $ D2 (S($(E^2 - E^2)^2)/S$	1/(2)	$2 \times (0.0207 \text{ m})^2 \times 0.7410 \text{ m} = 1 \times 1000 \text{ m}$	

 $\overline{R1 = \Sigma \Pi Fo} |-|Fc|/\Sigma|Fo||.wR2 = [\Sigma [w(Fo^2 - Fc^2)^2]/\Sigma [w(Fo^2)^2]]^{0.5}, \text{ calcd. } w = 1/[2(Fo^2) + (0.0387P)^2 + 0.7419P] \text{ where } P = (Fo^2 + 2Fc^2)/3.$

3. Theoretical Calculations

Geometries of model complexes $CpRu(CO)\{({}^{t}Bu)MeSi\cdots H\cdots SiMe({}^{t}Bu)\}$ (cis-2') and $CpFe(CO){(Bu)MeSi \cdots H \cdots SiMe(Bu)}$ (3) were optimized by the DFT method with the B3LYP functional.^{S11} For Ru and Fe, the LANL2DZ basis set was employed, where the core electrons were replaced with the effective core potentials (ECPs). The 6-31G(d) basis sets were employed for the other atoms. Geometry optimization started from structures of silyl(silylene) complexes $Cp(OC)M=SiMe(^{t}Bu){SiMe(^{t}Bu)H}$ (M = Ru, Fe) that has no M-Si-H-Si four-membered ring, and finally reached the structures of CpM(CO){('Bu)MeSi···H···SiMe('Bu)} having a four-membered ring as the optimized structures. For the analysis of molecular orbitals, a smaller model $CpRu(CO)(H_2Si\cdots H\cdots SiH_2)$ (2") was optimized for simplicity and was used. For the analysis of the electronic structure such as NBO (Natural Bond Orbital) analysis^{S12} and WBI (Wiberg Bond Indices) calculations,^{S13} the 6-311G(d) basis sets were employed for Si atom and the 6-31G(d) basis sets for the other main group atoms. All calculations were carried out with Gaussian03 program package.^{S14} Atomic coordinates for the optimized structures of 2", cis-2' and 3' are listed in Tables S3, S4 and S5, respectively. Important Kohn-Sham orbitals of 2" are depicted in Fig. S14.

number	atom	X	Y	Ζ
1	Ru1	0.000000	0.000000	0.000000
2	Si1	0.000000	0.000000	2.330300
3	Si2	2.109751	0.000000	0.990512
4	C1	-0.016717	-1.877604	-0.044240
5	01	-0.050590	-3.036914	-0.108814
6	C2	-0.401541	2.211954	-0.515758
7	C3	0.309977	1.644301	-1.621505
8	C4	-0.499494	0.625600	-2.190100
9	C5	-1.731256	0.573858	-1.450537
10	C6	-1.675885	1.561243	-0.431758
11	H1	1.676955	0.049169	2.642140
12	H2	-0.265745	1.226767	3.137753
13	H3	-0.189211	-1.166212	3.238674
14	H4	2.957881	1.223306	1.097550
15	H5	3.004569	-1.170468	1.214790
16	H6	-0.066193	3.035592	0.100064
17	H7	1.291593	1.942363	-1.964528
18	H8	-0.244989	0.011109	-3.043027
19	H9	-2.563234	-0.087819	-1.651255
20	H10	-2.459064	1.786226	0.279489

Table S3 Atomic coordinates of CpRu(CO)(H₂Si···H···SiH₂} (2")

number	atom	X	Y	Z	
1	Ru1	0.000000	0.000000	0.000000	
2	Si1	0.000000	0.000000	2.345700	
3	Si2	2.144139	0.000000	0.961123	
4	C1	-0.042435	-1.852281	-0.165010	
5	01	-0.127090	-2.996866	-0.377957	
6	C2	-0.412923	2.237297	0.505643	
7	C3	0.269873	1.678432	-1.632013	
8	C4	-0.557526	0.668218	-2.187827	
9	C5	-1.770815	0.614803	-1.420717	
10	C6	-1.686580	1.591339	-0.394970	
11	H1	1.703207	-0.136367	2.611087	
12	C7	-0.183772	1.695567	3.204016	
13	C8	-0.603975	-1.343787	3.612007	
14	C9	3.032673	1.684569	1.087094	
15	C10	3.503836	-1.383764	0.932903	
16	H2	-0.064413	3.059030	0.104865	
17	H3	1.241831	1.978419	-1.999660	
18	H4	-0.327290	0.058118	-3.051247	
19	H5	-2.608257	-0.045052	-1.605128	
20	H6	-2.452267	1.814265	0.335706	
21	H7	-1.221623	2.038656	3.110287	
22	H8	0.064582	1.668155	4.270539	
23	H9	0.450331	2.447598	2.724813	
24	C11	-0.621547	-2.767059	3.028081	
25	C12	0.252353	-1.333759	4.895176	
26	C13	-2.057819	-0.945511	3.968106	
27	H10	3.631431	1.837744	0.179312	
28	H11	2.314343	2.507610	1.141900	
29	H12	3.708796	1.752658	1.945088	
30	C14	2.986353	-2.743263	1.436616	
31	C15	3 949262	-1528601	-0 541802	
32	C16	4 721414	-0.974681	1 788974	
33	H13	0 377035	-3.112853	2 743138	
34	H14	-1.010425	-3471002	3 778425	
35	H15	-1 261742	-2.839841	2.144073	
36	H16	0 299174	-0.343420	5 362117	
37	H17	-0 175769	-2 022683	5 638059	
38	H18	1 279910	-1 660555	4 698283	
39	H19	-2 703133	-0.914011	3 080682	
40	H20	-2 487575	-1 688832	4 654579	
41	H21	-2 115866	0.029023	4 466452	
42	H22	2 127247	-3 103596	0.864426	
43	H23	3 779660	-3 499941	1 349078	
43	H24	2 699143	-2 698649	2 494203	
45	H25	4 344736	_0 589197	-0.950604	
46	H25	4 75225	_2 275733	_0 618901	
47	H20 H27	3 125171	-2.275755	_1 185115	
	H28	<u> </u>	-0.821/77	2 840831	
-10 /10	H20	5 187757	_1.768117	1 758667	
50	Ц20	5 105216	_0.056500	1 / 25000	
50	1150	5.175010	-0.030377	1.743777	

 Table S4 Atomic coordinates of CpRu(CO){('Bu)MeSi···H···SiMe('Bu)} (cis-2')

number	atom	X	Y	Ζ
1	Fe1	0.000000	0.000000	0.000000
2	Si1	0.000000	0.000000	2.248286
3	Si2	2.085527	0.000000	0.843799
4	C1	-0.046546	-1.718317	-0.199207
5	01	-0.128100	-2.856625	-0.439380
6	C2	-0.378486	2.072576	-0.363540
7	C3	0.323509	1.521658	-1.478582
8	C4	-0.471205	0.481461	-2.026723
9	C5	-1.679575	0.394539	-1.256591
10	C6	-1.623357	1.378965	-0.237028
11	H1	1.697810	-0.171046	2.502150
12	C7	-0.146051	1.683472	3.142543
13	C8	-0.611030	-1.346147	3.514482
14	C9	3.007386	1.667929	0.984970
15	C10	3.434914	-1.398425	0.749879
16	H2	-0.045271	2.894446	0.254032
17	H3	1.288238	1.844973	-1.845407
18	H4	-0.209964	-0.144613	-2.869413
19	H5	-2.483118	-0.312102	-1.415794
20	H6	-2.390561	1.575339	0.499548
21	H7	-1.168674	2.066248	3.036930
22	H8	0.076059	1.622588	4.213277
23	H9	0.525773	2.424701	2.699720
24	C11	-0.648904	-2.764643	2.919574
25	C12	0.250643	-1.359590	4.793445
26	C13	-2.058426	-0.934533	3.881980
27	H10	3.581354	1.835540	0.063766
28	H11	2.310749	2.504808	1.087652
29	H12	3.713550	1.698318	1.820574
30	C14	2.948696	-2.740103	1.327947
31	C15	3.759768	-1.587217	-0.751145
32	C16	4.719400	-0.982136	1.496275
33	H13	0.344287	-3.117784	2.624607
34	H14	-1.038713	-3.471526	3.666817
35	H15	-1.296385	-2.824187	2.039642
36	H16	0.312106	-0.374166	5.268861
37	H17	-0.180579	-2.051013	5.532477
38	H18	1.273675	-1.695052	4.587429
39	H19	-2.710771	-0.896671	2.999713
40	H20	-2.490827	-1.671966	4.573281
41	H21	-2.102957	0.041644	4.378664
42	H22	2.048919	-3.109041	0.828806
43	H23	3.729001	-3.505150	1.202190
44	H24	2.740309	-2.664989	2.402117
45	H25	4.119610	-0.660523	-1.217871
46	H26	4.552612	-2.339180	-0.874370
47	H27	2.884010	-1.929112	-1.313757
48	H28	4.532924	-0.800199	2.561902
49	H29	5.468752	-1.784120	1.426420
50	H30	5.172207	-0.077756	1.075607

Table S5 Atomic coordinates of $CpFe(CO)\{({}^{t}Bu)MeSi\cdots H\cdots SiMe({}^{t}Bu)\}$ (3')

HOMO-9

HOMO-5 HOMO-6 **Fig. S14** Important Kohn-Sham orbitals of $CpRu(CO)(H_2Si\cdots H\cdots SiH_2)$ (2").

4. References

- S1. M. Iwata, M. Okazaki and H. Tobita, Organometallics, 2006, 25, 6115.
- S2. H. Hashimoto, A. Matsuda and H. Tobita, Chem Lett., 2005, 34, 1374.
- **S3.** (a) R. Savela, W. Zawartka and R. Leino, *Organometallics*, 2012, **31**, 3199; (b) K. Hassler and M. Weidenbruch, *J. Organometa. Chem.*, 1994, **465**, 127.
- S4. (a) P. Patschinski and H. Zipse, *Org. Lett.*, 2015, 17, 3318; (b) P. Patschinski, C. Zhang and H. Zipse, *J. Org. Chem.*, 2014, 79, 8348; (c) A. Bartoszewicz, M. Kalek, and J. Stawinski, *Tetrahedron*, 2008, 64, 8843.
- **S5.** (a) O. W. Sørensen, R. Freeman , T. Frenkiel, T. H. Mareci and R. Schuck, *J. Magn. Reson.*, 1982, **46**, 180; (b) H. B.Yokelson, A. J. Milleolte, B. R. Adams and R. West, *J. Am. Chem. Soc.*, 1987, **109**, 4116.
- S6. H. Hashimoto, Y. Odagiri, Y. Yamada, N. Takagi, S. Sakaki and H. Tobita J. Am. Chem. Soc., 2015, 137, 158.
- S7. A. Furstner and H. Weidmann, J. Organomet. Chem., 1988, 354, 15.
- S8. Higashi, T. NUMBUS, Rigaku Corporation, Tokyo, Japan.
- S9. (a) G. M. Sheldrick, SHELXS-97, Program for Crystal Structure Determination; University of Göttingen;
 Göttingen, Germany, 1997; (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Determination; University of Göttingen; Göttingen, Germany, 1997.
- S10. K. Wakita, Yadokari-XG, Software for Crystal Structure Analyses, (2001); C. Kabuto, S. Akine, T. Nemoto and E. Kwon, Release of Software (Yadokari-XG 2009) for Crystal Structure Analyses, J. Cryst. Soc. Jpn., 2009, 51, 218.
- S11.(a) A. D. Becke, "Density-functional exchange-energy approximation with correct asymptotic-behavior," *Phys. Rev. A*, 1988, 38, 3098; b) C. Lee, W. Yang and R. G. Parr, "Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density," *Phys. Rev. B*, 1988, 37, 785; (c) B. Miehlich, A. Savin, H. Stoll, H. Preuss, "Results obtained with the correlation-energy density functionals of Becke and Lee, Yang, Parr," *Chem. Phys. Lett.*, 1989, 157, 200.
- S12. (a) NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold; (b) J. E. Carpenter and F. Weinhold, *J. Mol. Struct. (Theochem)*, 1988, 169, 41; (c) J. E. Carpenter, PhD thesis, University of Wisconsin, Madison, WI, 1987; (d) J. P. Foster, F. Weinhold, *J. Am. Chem. Soc.*, 1980, 102, 7211; (e)

A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 4066; (f) A. E. Reed and F. Weinhold, J. Chem. Phys., 1983, 78, 1736; (g) A. E. Reed, R. B. Weinstock and F. Weinhold, J. Chem. Phys., 1985, 83, 735;
(h) A. E. Reed, L. A. Curtiss and F. Weinhold, Chem. Rev., 1988, 88, 899; (i) F. Weinhold, J. E. Carpenter, Plenum., 1988, 227.

S13. K. B. Wiberg, *Tetrahedron*, 1968, **24**, 1083.

S14. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.