Supporting information for

Mixed-Valence Metallogrid [Co^{III}₂Co^{II}₂] with Unusual Electronic Structure and Single-Ion-Magnet Characterization

Wei Huang,^a Feifei Pan,^a Zhenxing Wang,^b Yan Bai,^c Xuejun Feng,^{*a}

Jiande Gu,^aZhong-Wen Ouyang^b and Dayu Wu^{*a}

^a Key Laboratory of Advanced Catalytic Materials and Technology, Collaborative Innovation Center of Advanced Catalysis & Green Manufacturing, School of Petrochemical Engineering, Changzhou University, 213164, China

^b Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074 Wuhan, China

^c Key Laboratory of Polyoxometalate Chemistry of Henan Province, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, People's Republic of China.

Figure S1. The ¹H NMR spectra of ligand L in DMSO- d^6 .

Figure S2. Ligand L and the simplified L. Color legend: red for O, grey for C, blue for N, and white for H.

Figure S3. The optimized structure of the model. Color legend: light blue for Co, others see Fig. S3.

Figure S4. The unoccupied dx^2-y^2 (top) and dz^2 (below) MO of Co(III).

Figure S5. The UV-vis-NIR spectra of compound 1 in solid state.

Figure S6. The experimental and calculated powder X-ray diffraction pattern of 1.

Figure S7. Frequency dependence of out-of-phase ac signal at different applied dc fields of **1**. The red lines are the best fit according to the generalized Debye model.

Figure S8. The in-phase χ'_{M} components of the ac magnetic susceptibility for 1 under 1000 Oe dc field. The solid lines are guided for eyes.

Co1-O3	1.856(4)	Co1-N11	1.860(4)
Co1-N5	1.892(4)	Co1-O4	1.899(3)
Co1-O7	1.876(3)	Co1-O8	1.917(4)
Co2-O12	1.985(4)	Co2-N6	2.033(4)
Co2-N7	2.044(4)	Co2-O14	2.065 (4)
Co2-O4	2.354(3)	Co3-N9	1.878(4)
Co3-O1	1.885(4)	Co3-N2	1.892(4)
Co3-O6	1.886(3)	Co3-O2	1.8947(16)
Co3-O5	1.914(3)	Co4-O9	1.981(4)
Co4-O10	2.007(2)	Co4-N12	2.028(5)
Co4-N3	2.032(4)	O3-Co1-N11	88.53(9)
O3-Co1-O7	93.38(8)	N11-Co1-O7	83.27(9)
O3-Co1-N5	83.14(9)	N11-Co1-N5	169.68(9)
O7-Co1-N5	91.12(9)	O3-Co1-O4	178.11(9)
N11-Co1-O4	92.72(9)	O4-Co1-O7	88.18(8)
N5-Co1-O4	95.76(9)	O3-Co1-O8	89.64(9)
N11-Co1-O8	94.84(10)	O7-Co1-O8	176.39(7)
N5-Co1-O8	91.21(9)	O4-Co1-O8	88.84(8)
O12-Co2-N6	97.78(9)	O12-Co2-N7	111.17(9)
N6-Co2-N7	138.69(10)	O12-Co2-O14	94.67(8)
N6-Co2-O14	107.45(9)	N7-Co2-O14	99.11(8)
O12-Co2-O4	88.46(7)	N6-Co2-O4	59.63(8)
N7-Co2-O4	91.42(8)	O14-Co2-O4	167.05(8)
N9-Co3-O1	90.80(9)	N9-Co3-N2	171.27(9)
O1-Co3-N2	84.37(9)	N9-Co3-O6	82.46(9)
O1-Co3-O6	90.15(8)	N2-Co3-O6	90.27(9)
N9 Co3 O2	90.10(9)	O1-Co3-O2	177.78(9)
N2-Co3-O2	94.99(9)	O6-Co3-O2	91.98(8)
N9-Co3-O5	96.07(9)	O1-Co3-O5	88.88(8)
N2-Co3-O5	91.11(9)	O6-Co3-O5	178.23(8)
O2-Co3-O5	89.01(8)	O9-Co4-O10	93.44(10)
O9-Co4-N12	112.01(10)	O10-Co4-N12	95.54(10)
O9-Co4-N3	100.73(11)	O10-Co4-N3	112.91(10)
N12-Co4-N3	135.00(11)		

Table S2. The total energy (in Hartree) and the cartesian coordinates for the optimised structure of the complex **1**.

HF=-8478.10516			
Со	0.000000	-0.000000	-2.729199
Со	-0.149746	-2.875575	-0.101214
Со	0.149746	2.875575	-0.101214
С	-2.997926	-0.530874	1.463494
С	-4.284356	-0.889979	1.041079
Н	-5.130815	-0.306448	1.404123
С	-4.483626	-1.947705	0.163186
С	-3.366064	-2.637702	-0.295089
С	-1.919239	-1.316042	0.975086
С	2.808628	-0.584642	2.341622
Н	3.674855	-1.175144	2.651836
С	2.997926	0.530874	1.463494
С	4.284356	0.889979	1.041079
С	5.130815	0.306448	1.404123
С	4.483626	1.947705	0.163186
C	3.366064	2.637702	-0.295089
Č	1.919239	1.316042	0.975086
C	2.849814	0.275706	-2.491388
H	3.767899	0.782583	-2.799969
C	2.937290	-0.885793	-1.657319
Č	4,189104	-1.388934	-1.278750
Ĥ	5.083200	-0.891728	-1.656270
Ċ	4.297579	-2.479838	-0.427270
Č	3.125111	-3.063636	0.042617
Č	1 798008	-1 563058	-1 148912
C	-0 564538	-2.062091	-4 213946
Č	-2.849814	-0.275706	-2.491388
н	-3 767899	-0 782583	-2 799969
C	-2 937290	0.885793	-1 657319
C	-4 189104	1 388934	-1 278750
C	-4 297579	2 479838	-0 427270
C	-3 125111	3.063636	0.042617
C	-1 798008	1 563058	-1 148912
C	-1 183008	-4 487715	2 247831
н	-0.930167	-5 148406	3 086356
Н	-1 842231	-5 025097	1 550600
Н	-1 709419	-3 610023	2 635924
C II	0 331302	-5 540803	-1 045793
N	-2 128829	-2 328135	0 100142
N	1 651294	-0.931553	2 812852
N	2 128829	2 328135	0 100142
N	1 725971	0 772391	-2 903317
N	1 918574	-2 615335	-0.311135
N	-1 760275	-1 898186	-3 697004
N	-1.700273	-0.772391	-2 903317
N	-1 918574	2 615335	-0 311135
0	-0.655656	-1 177146	1 264905
0	-0.055050 N 655656	1 1771/6	1 26/005
0	_0.055050	1 207682	-4 015860
	0.401123	-1 265012	-4.013009
0	0.342094	-1.205012	-1.500020
0 0	_0 5/280/	1 265012	-1 380028
Ő	0.042074	-4 031942	1 608964
0	0.000000	7.031774	1.000704

Н	0.452459	-4.821361	1.166472
0	0.918290	-5.870155	0.001411
0	-0.319509	-4.463451	-1.269964
0	-0.000000	4.031942	1.608964
Со	-0.000000	0.000000	2.632395
С	-0.398127	2.045111	4.197728
С	-2.808628	0.584642	2.341622
Н	-3.674855	1.175144	2.651836
С	0.398127	-2.045111	4.197728
Ν	-1.604047	1.993379	3.686726
Ν	-1.651294	0.931553	2.812852
Ν	1.604047	-1.993379	3.686726
0	0.581058	1.248347	3.934017
0	-0.581058	-1.248347	3.934017
С	1.183008	4.487715	2.247831
Н	1.842231	5.025097	1.550600
Н	1.709419	3.610023	2.635924
Н	0.930167	5.148406	3.086356
С	0.564538	2.062091	-4.213946
С	-0.331302	5.540803	-1.045793
Ν	1.760275	1.898186	-3.697004
0	-0.918290	5.870155	0.001411
0	0.319509	4.463451	-1.269964
Н	-0.452459	4.821361	1.166472
Н	-5.083200	0.891728	-1.656270
Н	-0.432200	-2.912268	-4.886810
Н	-3.131428	3.918766	0.717283
Н	-5.265610	2.874959	-0.132675
Н	-0.340474	6.252052	-1.896999
Н	0.340474	-6.252052	-1.896999
Н	-5.479564	-2.229937	-0.166422
Н	-3.438468	-3.457849	-1.009098
Н	-0.208801	2.839052	4.924894
Н	0.208801	-2.839052	4.924894
Н	0.432200	2.912268	-4.886810
Н	5.479564	2.229937	-0.166422
Н	3.438468	3.457849	-1.009098
Н	5.265610	-2.874959	-0.132675
Н	3.131428	-3.918766	0.717283

Table S3. The Mullican charge and spin for the optimised structure of the complex 1.

		Charge	SPIN
1	Co	1.186789	0.020614
2	Co	1.128336	2.807811
3	Co	1.128336	2.807811
4	С	0.041890	0.001626
5	С	-0.169325	-0.017909
6	Н	0.184066	0.001287
7	С	-0.253163	0.010145
8	С	0.041428	-0.019574
9	С	0.665470	-0.005490
10	С	0.041061	0.001522
11	Н	0.194109	0.000045
12	С	0.041890	0.001626
13	С	-0.169325	-0.017909
14	Н	0.184066	0.001287
15	С	-0.253163	0.010145
16	С	0.041428	-0.019574
17	С	0.665470	-0.005490
18	С	0.044365	0.001912
19	Н	0.191301	-0.000055
20	С	0.043118	0.000215
21	C	-0.168234	-0.013596
22	Н	0.182463	0.001012
23	С	-0.253795	0.008178
24	C	0.051039	-0.014913
25	C	0.688231	-0.001001
26	С	0.328463	-0.000501
27	С	0.044365	0.001912
28	Η	0.191301	-0.000055
29	С	0.043118	0.000215
30	С	-0.168234	-0.013596
31	С	-0.253795	0.008178
32	С	0.051039	-0.014913
33	С	0.688231	-0.001001
34	С	-0.254297	-0.001799
35	Н	0.181868	0.002348
36	Н	0.179082	0.002038
37	Н	0.183269	0.001051
38	С	0.438049	-0.005048
39	Ν	-0.633062	0.026139
40	Ν	-0.373347	-0.001159
41	Ν	-0.633062	0.026139
42	Ν	-0.376379	-0.001615
43	Ν	-0.626247	0.023888
44	Ν	-0.287770	0.000128
45	Ν	-0.376379	-0.001615
46	Ν	-0.626247	0.023888
47	0	-0.717678	0.014173
48	0	-0.717678	0.014173
49	0	-0.539887	0.002420
50	0	-0.739657	0.016082
51	0	-0.539887	0.002420
52	0	-0.739657	0.016082
53	0	-0.726391	0.049892
54	Н	0.512353	-0.000782

55	0	-0.557265	0.006164		
56	0	-0.589508	0.071970		
57	0	-0.726391	0.049892		
58	Co	1.183994	0.016567		
59	С	0.322752	-0.000418		
60	С	0.041061	0.001522		
61	Η	0.194109	0.000045		
62	С	0.322752	-0.000418		
63	Ν	-0.275312	0.000280		
64	Ν	-0.373347	-0.001159		
65	Ν	-0.275312	0.000280		
66	0	-0.545834	0.002181		
67	0	-0.545834	0.002181		
68	С	-0.254297	-0.001799		
69	Η	0.179082	0.002038		
70	Η	0.183269	0.001051		
71	Η	0.181868	0.002348		
72	С	0.328463	-0.000501		
73	С	0.438049	-0.005048		
74	Ν	-0.287770	0.000128		
75	0	-0.557265	0.006164		
76	0	-0.589508	0.071970		
77	Η	0.512353	-0.000782		
78	Η	0.182463	0.001012		
79	Η	0.180773	0.000057		
80	Η	0.205642	0.002261		
81	Η	0.192922	0.000345		
82	Η	0.109431	0.006688		
83	Η	0.109431	0.006688		
84	Η	0.192220	0.000342		
85	Η	0.206999	0.002972		
86	Η	0.171058	0.000100		
87	Η	0.171058	0.000100		
88	Η	0.180773	0.000057		
89	Η	0.192220	0.000342		
90	Н	0.206999	0.002972		
91	Η	0.192922	0.000345		
92	Η	0.205642	0.002261		

Table S4. The parameters of χ_T , χ_S , τ , and α used in the analyses by Debye model for complex 1 under the different fields at 2 K.

	χт	χs	α	τ (s)
200 Oe	1.59	0.91	0.09	0.00046
500 Oe	2.52	0.47	0.15	0.00117
1000 Oe	2.72	0.28	0.16	0.00190
1500 Oe	2.74	0.26	0.17	0.00221
2000 Oe	2.72	0.28	0.18	0.00226

Table S5. The parameters of χ_T , χ_S , τ , and α used in the analyses by Debye model for complex **1** under 1000 Oe field.

	χт	χs	α	τ
2.0 K	2.75	0.38	0.19	0.00189
2.25 K	2.48	0.35	0.19	0.00129
2.5 K	2.15	0.33	0.12	0.00079
2.75 K	1.93	0.31	0.06	0.00045
3.0 K	1.78	0.31	0.04	0.00024
3.25 K	1.66	0.38	0.04	0.00014
3.5 K	1.54	0.31	0.04	0.00008
3.75 K	1.45	0.46	0.002	
4.0 K	1.37	0.53	0.005	

Equation S1.

$$\chi''(\chi') = -\frac{\chi_T - \chi_S}{2\tan[1/2\pi(1-\alpha)]} \{ [\frac{\chi_T - \chi_S}{2}]^2 - [\frac{\chi_T - \chi_S}{2\tan[1/2\pi(1-\alpha)]}]^2 - [\chi' - \frac{\chi_T + \chi_S}{2}]^2 \}^{1/2}$$