Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Half-Sandwich Iridium N-Heterocyclic Carbene Anticancer Complexes

Chuanlan Wang[†], Jinfeng Liu[†], Zhenzhen Tian, Meng Tian, Laijin Tian, Wenqian Zhao, Zhe Liu^{*}

The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, Institute of Anticancer Agents Development and Theranostic Application, Department of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China

Supporting Information

Figures S1-S7	,	
Tables S1-S4		
Figures S8-S2	0	

[†]The first two authors are equal first authors.

^{*} Corresponding author.

E-mail:liuzheqd@163.com.

Figure S1. ¹H NMR spectra showing the hydrolysis of complex $[(\eta^5 - C_5Me_5)Ir(L1)C1]PF_6(1A)$ (1 mM) in 20% CD₃CN /80% D₂O (v/v) at 310 K. (A) after 5 min; (B) after 5 h ; (C) after 24 h. Peaks labeled \blacklozenge correspond to aqua complex $[(\eta^5 - C_5Me_5)Ir(L1)D_2O]^+$, and peaks labeled Δ correspond to complex $[(\eta^5 - C_5Me_5)Ir(L1)C1]PF_6(1A)$.

 $^{1}\mathrm{H}$ Figure NMR **S2**. spectra showing the hydrolysis of complex [(η⁵-C₅Me₄C₆H₄C₆H₅)Ir(L1)Cl]PF₆ (**1C**) (1 mM) in 20% CD₃CN /80% D₂O (v/v) at 310 K. (A) after 5 min; (B) after 6 h; (C) after 24 h. Peaks labeled + correspond to aqua complex $[(\eta^5 - C_5 Me_4 C_6 H_4 C_6 H_5) Ir(L1) D_2 O]^+$, and peaks labeled Δ correspond to complex $[(\eta^5 - C_5 Me_4 C_6 H_4 C_6 H_5) Ir(L1) Cl] PF_6(1C).$

Figure S3. UV-Vis spectrum for a 50 μ M solution of complexs (A) **1B**, (B) **2A**, (C) **3A**, (D) **4A** in 5% MeOH/95% H₂O (v/v) recorded over a period of 8 h at 298 K.

Figure S4. Time dependence of hydrolysis of (A) **1A**, (B) **1B**, (C) **1C** and (D) **2B** in 5% MeOH/95% H_2O (v/v) at 298 K based on UV-Vis spectrum by measuring the absorption difference at 224nm, 225nm, 243nm and 225nm, respectively.

Figure S5. Reaction of $[(\eta^5-C_5Me_4C_6H_4C_6H_5)Ir(L4)CI]PF_6$ (**4C**) with 9-ethyladenine. (**A**) ¹H NMR spectrum of an equilibrium solution of complex **4C** (1.0 mM) in 20% CD₃CN /80% D₂O (v/v) at 310 K, 5 min after the addition of 1 mol equiv 9-ethyladenine, (**B**) 6 h after addition of 1 mol equiv 9-ethyladenine at 310 K, and (**C**) 24 h after addition of 1 mol equiv 9-ethyladenine at 310 K. After 24 h, no reaction is observed.

Figure S6. Agarose gel electrophoresis patterns for the cleavage of pBR322 DNA by various concentrations of complex **1B** cleavage conditions: 10 μ M DNA; 1 mM Tris–CH₃COOH buffer; pH 8; 37 °C for 24h. Lane 1: DNA control; Lane 2: DNA + 20 μ M **1B**; Lane 3: DNA +40 μ M **1B**; Lane 4: DNA + 60 μ M **1B**; Lane 5: DNA + 80 μ M **1B**; Lane 6: DNA +100 μ M **1B**.

Figure S7. UV/Vis spectra of the reaction of NADH (87 μ M) with **2B** and **2C** (0.8 μ M) in MeOH/H₂O (5:95) at 298 K for 8 h. (A) control: only NADH; (B) **2B**; (C) **2C**.

Complex	Cp ^X	R	G adduct (%)	A adduct (%)
1A	Cp*	CH ₃	0%	0%
1B	$\mathrm{Cp}^{\mathrm{xph}}$	CH ₃	0%	0%
1C	$\mathrm{Cp}^{\mathrm{xbiph}}$	CH_3	0%	0%
2A	Cp*	CH_2CH_3	0%	0%
2B	Cp^{xph}	CH ₂ CH ₃	0%	0%
2 C	Cp^{xbiph}	CH_2CH_3	0%	0%
3A	Cp*	Bu	0%	0%
3B	Cp^{xph}	Bu	0%	0%
3 C	Cp^{xbiph}	Bu	0%	0%
4 A	Cp*	ph	0%	0%
4B	$\mathrm{Cp}^{\mathrm{xph}}$	ph	0%	0%
4 C	Cp^{xbiph}	ph	0%	0%

Table S1. Extent of 9-EtG and 9-EtA Adduct Formation for Complexes **1A-4C** at 310 K after 24 h.

	Population (%)				
Complex	Ir concentration	Viable	Early apoptosis	Late apoptosis	Non-viable
2C	$1 \times IC_{50}$	88.08 ± 0.1	1.18 ±0.05	9.84 ±0.7	0.90 ± 0.4
2C	$2 \times IC_{50}$	14.93 ± 0.9	$0.32\ \pm 0.1$	83.17 ±0.02	1.58 ± 0.9
3C	$1 \times IC_{50}$	89.30 ± 0.8	0.79 ± 0.06	9.37 ±0.1	$0.55\ \pm 0.8$
3C	$2 \times IC_{50}$	75.56 ± 0.6	$1.47~\pm0.2$	21.85 ±0.04	1.12 ± 0.3
control		95.32 ±0.9	0.35 ± 0.1	3.70 ± 0.3	0.63 ± 0.6

Table S2. Flow cytometry analysis to determine the percentages of apoptotic cells, using Annexin V -FITC vs PI staining, after exposing Hela cells to complexes **2C** and **3C**.

	Population (%)			
Complex	Ir concentration	G ₁ phase	S phase	G ₂ /M phase
2 C	$0.25 \times IC_{50}$	46.0 ± 0.6	36.9 ±0.1	14.0 ± 0.5
2C	$0.5 imes IC_{50}$	51.0 ± 0.5	35.1 ±0.3	13.5 ±1
3 C	$0.25 imes IC_{50}$	52.6 ±0.8	24.7 ± 0.7	21.7 ±0.4
control		45.4 ±0.7	37.7 ±0.8	13.4 ±0.1

Table S3. Cell cycle analysis carried out by flow cytometry using PI staining after exposing Hela cells to complexes **2C** and **3C**.

		Population (%)	
Complex	Ir concentration	Cells in low ROS levels	Cells in high ROS lev els
2C	$0.25 \times IC_{50}$	6.22 ± 0.2	93.54 ±0.1
2C	$0.5 \times IC_{50}$	6.15 ±0.2	93.05 ±0.7
3C	$0.25 \times IC_{50}$	7.35 ± 0.5	95.42 ±3
3C	$0.5 \times IC_{50}$	4.52 ± 0.6	93.62 ±0.3
Untreated cells (negative control)		99.13 ±0.5	0.72 ± 0.6
CCCP treated cells (positive control)		20.79 ±0.7	78.71 ±1.7

Table S4. ROS induction in Hela cancer cells treated with complexes 2C and 3C.

Figure S8: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals of complex **1A** $[(\eta^5-C_5Me_5)Ir(L1)C1]PF_6$.

Figure S9: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals of complex **1B** $[(\eta^5-C_5Me_4C_6H_5)Ir(L1)C1]PF_6$.

Figure S10: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **1C** $[(\eta^5-C_5Me_4C_6H_4C_6H_5)Ir(L1)CI]PF_6$.

Figure S11: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **2A** $[(\eta^5-C_5Me_5)Ir(L2)CI]PF_6$.

Figure S12: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **2B** $[(\eta^5-C_5Me_4C_6H_5)Ir(L2)CI]PF_6$.

Figure S13: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **2C** $[(\eta^5-C_5Me_4C_6H_4C_6H_5)Ir(L2)CI]PF_6$.

Figure S14: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **3A** $[(\eta^5-C_5Me_5)Ir(L3)CI]PF_6$.

Figure S15: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **3B** $[(\eta^5-C_5Me_4C_6H_5)Ir(L3)C1]PF_6$.

Figure S16: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **3C** $[(\eta^5-C_5Me_4C_6H_4C_6H_5)Ir(L3)CI]PF_6$.

Figure S17: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **4A** $[(\eta^5-C_5Me_5)Ir(L4)CI]PF_6$.

Figure S18: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex **4B** $[(\eta^5-C_5Me_4C_6H_5)Ir(L4)CI]PF_6$.

Figure S19: The ¹H NMR (500.13 MHz, CD₃CN) peak integrals at 295 K of complex 4C $[(\eta^5-C_5Me_4C_6H_4C_6H_5)Ir(L4)CI]PF_6$.

3B

3C

Figure S20: The Mass spectra of complexes 1A-4C.