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General Experimental Procedures

All experiments were performed under an atmosphere of dry N, in a VAC
Atmospheres dry box. Solvents were purified using the appropriate VAC Atmospheres
solvent purifier or dried over sodium benzophenone ketyl and distilled under an
atmosphere of dry N»,. Solvents purified by these methods were subsequently degassed
using successive freeze-pump-thaw methods, and brought into the dry box without
exposure to air, and stored over activated 4 A molecular sieves. Celite was activated
and dried by heating under high vacuum (~ 0.3mm Hg) at > 200°C overnight.
Deuterated NMR solvents, C¢Dg and CDCls, were purchased from Cambridge Isotope
Laboratories, degassed using freeze-pump-thaw cycles and stored over 4 A molecular
sieves. The Schiff base ligand (L)Hz,' UCls?> and ThCl4(DME);® were synthesized by
reported methods. 'H NMR spectra were recorded using Varian VNMRS spectrometers
operating at 300MHz or 400MHz for "H at room temperature in CDCl; unless otherwise
specified. All chemical shifts herein are reported with reference to residual solvent
peaks for CDCl3; at 6 7.27. All infrared spectra were collected using an ATR adaptor on
a Thermo Scientific Nicolet 6700 FT-IR instrument at room temperature. Microanalyses

were performed at Atlantic Microlabs in Norcross, GA.
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Synthesis of (L)UCI(THF); (1):

Synthesis of Ky(L) generated for in situ use:

To a 20 mL scintillation vial charged with 14 mL of THF and a small stir bar,
(0.250 g, 0.609 mmol) of the racemate of (+)-trans-6,6"-Diethoxy-2,2'-[cyclohexane-1,2-
diylbis(nitrilomethanylylidene)]diphenol, (L)H. was added. The resulting clear yellow
solution was allowed to mix thoroughly, after which 2 equiv of KO'Bu (0.136 g, 1.21
mmol) was added to the solution as a solid. The solution immediately became opaque,
and a color change to a yellow-green was noted. The resulting solution was allowed to

stir for 1.5 h prior to use in subsequent chemistry.

Synthesis of (L)UCIy(THF), (1):

To a 20 mL scintillation vial charged with 4 mL of THF and a small stir bar, (0.231
g, 0.608 mmol) of UCls was added. The clear green solution was allowed to mix
thoroughly, after which the solution of Kz(L) (vide infra) was added drop-wise over 5
min. The resulting solution turned dark brown and then became a cloudy golden yellow
suspension during the addition of the dipotassium salt solution. The cloudy golden
yellow suspension was allowed to stir overnight (approx. 12 h). Volatiles were then
removed under vacuum, and the crude product was extracted with dichloromethane
(~75 mL). The extraction products were then filtered over a bed of Celite on a 30 mL
medium porosity frit under vacuum. The filtrate was then concentrated to dryness in
vacuo and the product was isolated as a yellow powder. Yield: 0.423 g, 81 %. The
product was recrystallized from pyridine over the course of 2 weeks at room

temperature. 'H NMR (300 MHz, CDCls, 298 K): 6 = 45.23 (2H), 41.73 (2H), 38.94 (2H),
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28.30 (2H), 24.59 (2H), 23.97 (2H), 5.56 (6H,0CH,CHj), -10.29 (4H, THF), -11.19 (2H),
-12.11 (2H), -15.58 (4H, THF), -19.93 (2H), -22.27 (2H), -89.80 (2H, HC=N). IR (cm™):
2073(C-H), 2927(C-H), 1614(C=N), 1598(C=C). Elemental analysis of
(L)UCIo(THF)2*CH.Cly: Theoretical C: 41.87, H: 4.90, N: 2.96; Actual: C: 42.30, H: 5.01,

N: 3.17.

Synthesis of (L)UCIy(Py). (1°Py2)

To a 20 mL scintillation vial charged with 8 mL of pyridine and a small stir bar,
(0.250 g, 0.608 mmol) of (L)H2 was added. The clear yellow solution was allowed to mix
thoroughly, after which 2 equiv of KO'Bu powder was added. The solution became
cloudy upon addition of the KO'Bu, and was allowed to stir for 1 h. To a separate 20 mL
scintillation vial charged with 3 mL of THF, 4 mL of Py and a small stir bar, (0.231 g,
0.608 mmol) of UCl, was added. The green solution was allowed to mix thoroughly,
after which the solution of Kx(L) prepared separately was added drop-wise over 5 min.
During the addition of Kx(L), the solution turned cloudy yellow-green, and the resulting
mixture was allowed to stir overnight (~18 h). Volatiles were removed in vacuo to afford
a yellow-green powder. The crude product was then extracted with dichloromethane
(~50 mL) and filtered over a bed of Celite on a medium porosity frit. The resulting yellow
solution was collected in a 125 mL side arm flask and the volatiles were removed in
vacuo, providing a yellow-green powder. Yield: (0.423 g, 79 %) 'H NMR (400MHz,
CDCls, 298 K) : 6 49.77 (2H), 44.54 (2H), 42.73 (2H), 31.14 (2H), 27.02 (2H), 25.02
(2H), 5.56 (6H, OCH,CHs), 0.47 (4H, Py), -4.37(1H, Py), -7.68(2H, Py), -11.44(2H), -

12.85(2H), -20.51(2H), -22.29(2H), -90.82 (2H, HC=N).
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Synthesis of (L)ThCI(THF); (2):

A solution of Kz(L) was generated in situ by the method above using (0.200 g,
0.487 mmol) of the racemate of (L)Hz and (0.109 g, 0.971 mmol) of KO'Bu. To a 20 mL
scintillation vial charged with 5 mL of THF and a small stir bar, (0.270 g, 0.487 mmol) of
ThCl4(DME), was added. The clear colorless solution was allowed to mix thoroughly,
after which the solution of K3(L) was added drop-wise over 5 min. The combined
solution instantly turned cloudy and yellow upon addition of the dipotassium salt. The
resulting suspension was allowed to stir overnight (~12 h), after which volatiles were
removed in vacuo. The crude product was extracted with dicholormethane (~75 mL) and
filtered over a bed of Celite on a 30 mL medium porosity frit. Volatiles were removed in
vacuo to afford a yellow powder. Yield: 0.302 g, 72 %. The yellow powder was
recrystallized from pyridine over 2 weeks at room temperature. 'H NMR (400 MHz, Ds-
Py, 298 K): 6 = 8.70 (s, 2H, HC=N), 7.35 (d, 2H, *Jun = 8 Hz, Ar-H), 7.20 (d, 2H, 3Jun =
8 Hz, Ar-H), 6.93 (t, 2H, *Jun = 8 Hz, Ar-H), 4.66 (2H, m, cyclohexyl), 4.04 (4H, q,%J =7
Hz, OCH.CHs), 2.25 (2H, m, cyclohexyl), 1.76 (2H, m, cyclohexyl), 1.40 (t, 6H, >Juy =
8Hz, OCH,CHs), 1.17 (2H, m, cyclohexyl). *C NMR (100 MHz, Ds-Py, 298 K): ¢ =
163.41 (C=N), 152.76 (Ar-C), 149.10 (Ar-C), 127.32 (Ar-C), 125.00 (Ar-C), 117.48 (Ar-
C), 115.98 (Ar-C), 67.76 (cyclohexyl), 63.51 (OCHCHs) 30.50 (cyclohexyl), 24.66
(cyclohexyl), 15.03 (OCH,CH3). IR (cm™): 2973 (C-H), 2928 (C-H), 1611 (C=N), 1561
(C=C). Elemental analysis of (L)ThCIx(THF)2+(1.5 CH2Cly): Theoretical: C: 41.29, H:

4.79, N: 2.83; Actual: C: 41.21, H:4.80, N: 3.27.
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Synthesis of (L)U(Ns)2(Py):2 (3):

To a 20 mL scintillation vial charged with 8 mL of pyridine and a small stir bar,
(0.115 g, 0.133 mmol) of (L)UCIx(THF)2 (1) was added. The resulting clear yellow-green
solution was allowed to mix thoroughly and was heated to 70 °C, after which 6 equiv of
NaN3 (0.053 g, 0.800 mmol) was added. No immediate color changed was observed,
but after 24 h the solution color changed from yellow-green to dark amber. The resulting
solution was allowed to stir for 4 days, after which volatiles were removed under
vacuum. The crude product was extracted with dichloromethane and filtered over a bed
of Celite in a pasture pipette to afford a clear amber solution. Volatiles were removed
under vacuum to yield a pale brown solid. The resulting solid was recrystallized slowly
from dichloromethane and dark brown crystals were afforded within 24 h. Yield 0.072 g,
61%. 'H NMR (300 MHz, CDCls, 298 K): 6 49.43 (2H), 42.37 (2H) ,40.25 (2H), 29.63
(2H), 26.20 (2H), 24.35 (2H), 5.32 (6H, OCH,CHj3), -5.51 (1H), -10.95 (2H), -11.87
(2H), -19.66 (2H), -22.04 (2H), -86.81 (2H, HCN). IR (cm™): 2973 (C-H), 2055 (N3),
1611 (C=N), 1599 (C=C). Elemental analysis of (L)U(N3)2(Py)2¢(1.5 Py, 1 CHxCl,):

Theoretical C: 46.73, H: 4.38, N: 14.75; Actual: C: 46.93, H: 4.64, N: 14.27.

Synthesis of (L)Th(N3)2(Py)2 (4):

To a 20 mL scintillation vial charged with 10 mL of pyridine and 4 mL of THF,
(0.075 g, 0.088 mmol) of (L)ThCIx(THF)2 (2) was added. The yellow translucent solution
was allowed to mix thoroughly, after which approximately 8 equiv. of NaN;3; (0.046 g,
0.701 mmol) was added. The solution was heated to 80 °C and stirred for 4 days. The

cloudy yellow suspension was filtered over Celite to give a pale-yellow solution and
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volatiles were removed in vacuo to afford a yellow solid. The crude product was then
extracted with dichloromethane and filtered over Celite a second time, and volatiles
were removed in vacuo. Yield: 0.063 g, 82 %. 'H NMR (400 MHz, Ds-Py, 298 K): 6 8.85
(s, 2H, HC=N), 7.36 (d, 2H, *Ju = 8Hz, Aryl), 7.18 (d, 2H, >Jun = 8Hz, Ar-H), 6.92 (t, 2H,
Jun = 8Hz, Ar-H), 4.28 (m, 2H, cyclohexyl), 4.04 (q, 4H, *Juy = 8Hz, OCH.CH3), 2.36
(m, 2H, cyclohexyl), 1.77 (2H, m, cyclohexyl), 1.38 (m, 2H, cyclohexyl), 1.33 (t, 6H, 3 JiH
= 7 Hz, OCH2CHj;). *C NMR (100 MHz, Ds-Py, 298 K): 6 = 163.94 (C=N), 152.75 (Ar-
C), 127.37 (Ar-C), 124.49 (Ar-C), 117.45 (Ar-C), 116.36 (Ar-C), 114.71 (Ar-C), 68.32
(cyclohexyl), 63.62 (OCH,CHs), 30.86 (cyclohexyl), 24.79 (cyclohexyl), 15.01
(OCH2CH3). IR (cm™): 2930 (C-H), 2061 (N3), 1603 (C=N), 1558 (C=C). Elemental
Analysis of (L)Th(N3)2(Py)2*(1.5 CH.Cl,, 0.5 Py): Theoretical: C: 43.48, H: 4.18, N:

14.01; Actual: C: 43.46, H: 4.42, N: 13.69.

Synthesis of (L)UO(Py) (5)

To a 20 mL scintillation vial charged with 8 mL of pyridine and a small stir bar,
(0.100 g, 0.114 mmol) of (L)UCIx(Py). (1-Py) was added. The opaque yellow
suspension was allowed to mix thoroughly, after which approximately 11 equiv of
NaNO, (0.088 g, 1.26 mmol) were added to the solution. After approximately 1 h of
stirring, the color of the solution changed from yellow to orange. The resulting solution
was allowed to stir overnight (~12 h) at 60°C. Volatiles were removed in vacuo to afford
an orange solid. The crude product was then extracted with dichloromethane (~14 mL)
and filtered over a bed of Celite on a frit and volatiles were removed in vacuo to afford a

bright orange solid. Yield: 0.087g, quantitative yield. The product was recrystallized
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slowly from CDCI; at room temperature as orange plate crystals. 'H NMR (300 MHz,
CDCls, 298 K): 6 10.81 (2H, Py), 9.26 (s, 2H, HC=N), 8.03 (1H, Py), 7.83 (2H, Py), 7.13
(d, 2H, %Jun = 8 Hz, Ar-H), 7.11 (d, 2H, *Jun = 8 Hz, Ar-H) 6.62 (t, 2H, *Jun = 8 Hz, Ar-
H), 4.15 (q, 4H, °Juy = 7 Hz, OCH:CH3), 2.51 (m, 2H, cyclohexyl), 2.12 (m, 2H
cyclohexyl), 1.93 (m, 2H, cyclohexyl), 1.58 (m, 2H, cyclohexyl) 1.53 (t, 6H, 3Jun = 8 Hz,
OCH,CHs). *C NMR (100 MHz, CDCls, 298 K): 8 165.84 (C=N), 159.68 (Ar-C), 150.62
(Ar-C), 125.76 (Ar-C), 123.83 (Ar-C), 117.02 (Ar-C), 116.47 (Ar-C), 71.04 (cyclohexyl-
C), 64.34 (OCH2CHj3), 32.11 (cyclohexyl-C), 25.14 (cyclohexyl-C), 15.44 (OCH,CHj3).
Elemental Analysis of (L)UO,(Py)+(2 CDCls): Theoretical: C: 37.33, H: 3.64, N: 4.21;

Actual: C: 36.88, H: 3.64, N: 4.18.

S10



'H, 3C and HSQC NMR Spectra:

o =3 o o o o o o o b=3 b3 o o o o
EEEEEEEREEEEEEEEEEEEEEE g 8
~ _M. ~ — — - aul. 111111 4 -« w»l * v ™ .-‘ 1—1 m ».
fLte= - @ _— ~v61 [ §
3
S~
- R
F3
3
=4
i
L2
9T~ — —3 se81| T
£6'61-— —_ w —
T swz| =
s _—
61 T1-— — | o
6201~/ W\\\' Amo.m v
T
—4 ~S00f-°
se'g < (%0
> — o *009
wt’ o =
o
[
O
8
L6ET~ — —= (81
0avz” e
0€'82" - —1 "s8llg
p6'8E— — —3 ~661|g
ELTH— — 661
¥Z'Sh~ — —  »£0T
2

Figure S1-A. "H NMR spectrum of (L)UCIy(THF)2 (1) in CDCls.
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Figure S5-A. "H NMR Spectrum of (L)UO2(Py) (5) in CDCls.
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Figure S5-B: >*C NMR Spectrum of (L)UO,(Py) (5) in CDCls.
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IR Spectra:
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Figure S6. Infrared Spectrum of Schiff Base Proligand (L)H.-.
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Figure S8. Infrared Spectrum of (L)ThCI,(THF), (2).
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X-Ray Diffraction Data:

X-Ray Diffraction Data for (L)UCI2(Py), (1°Py>).

Empirical formula
Formula weight
Crystal system
Space group

Unit cell dimensions

Volume

2,7

Density (calculated)
Wavelength

Temperature

F(000)

Absorption coefficient
Absorption correction

Max. and min. transmission
Theta range for data collection
Reflections collected
Independent reflections

Data / restraints / parameters
wR(F2 all data)

R(F obsd data)
Goodness-of-fit on F2
Observed data [l > 24(l)]
Largest and mean shift / s.u.
Largest diff. peak and hole

WR2 = { T [W(Fo2 - Fc2)?) 1 £ [w(Fo 2)2) 112

R1=X|IFo| - IFcll/ = |Fol

C3a H3s Cl2Na O« U

875.61
monoclinic
C2lc
a=19.233(6) A
b=19.034(6) A
c=12.202(4) A

a=90°
p= 122.796(3)°
¥=90°

3755(2) A3

4,05

1.549 Mg/m3

0.71073 A

100(2) K

1712

4.504 mm-1
semi-empirical from equivalents
0.687 and 0.411
1.653 to 27.517°
24171

4301 [R(int) = 0.0666]
4301/0/204

wR2 = 0.1424
R1=0.0424

1.020

3346

0.000 and 0.000
2.368 and -2.619 e/A3
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Empirical formula

Formula weight
Crystal system
Space group

Unit cell dimensions

Volume

2,z

Density (calculated)
Wavelength

Temperature

F(000)

Absorption coefficient
Absorption correction

Max. and min. transmission
Theta range for data collection
Reflections collected
Independent reflections

Data / restraints / parameters
WR(F2 all data)

R(F obsd data)
Goodness-of-fit on F2
Observed data [ > 25(1)]
Largest and mean shift / s.u.
Largest diff. peak and hole

WRQ:{Z[W(Foz‘Fcz)zllz[W(Foz)zl}wz

R1=Z|IF|-1FIITZ IRl

X-ray Diffraction Data for (L) ThCI>(Py)2 (2¢Py;).

(Cas Hag Cl2 N4 Os4 Th) - (Cs Hs N)
CacHaz Cl2 N5 O4 Th

948.72

monoclinic

P2i/c

a=16.806(13) A o=90°
b=14283(11) A B= 92.515(14)°
c=15268(12) A v=90°
3661(5) A3

4.1

1.721 Mg/m3

0.71073 A

100(2) K

1872

4.267 mm-"

semi-empirical from equivalents
0.726 and 0.675

2.268 to 22 .464°

85853

4595 [R(int) = 0.2301]

4595 /493 /462

WR2 =0.2203

R1=0.1052

1.071

2708

0.004 and 0.000

2233 and -1.716 e/A3
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X-ray Diffraction Data for (L)U(N3)2(Py)2 (3).

Comment:

This sample was a 3-component twin. The intensity data were effectively detwinned by
the data reduction and scaling programs. A dichloromethane molecule was severely

disordered and was eliminated using the Squeeze program.*

Empirical formula
Formula weight
Crystal system
Space group

Unit cell dimensions

Volume

Z,Z

Density (calculated)
Wavelength

Temperature

F(000)

Absorption coefficient
Absorption correction

Max. and min. transmission
Theta range for data collection
Reflections collected
Independent reflections

Data / restraints / parameters
WR(F2 all data)

R(F obsd data)
Goodness-of-fit on F2
Observed data [I > 2a(1)]
Largest and mean shift / s.u.
Largest diff. peak and hole

WR2 = { X [MF2 - F2P 1 % [W(Fy 221172

R1=Z IRl - IFcll 1 Z |Fol

Cas Haa Nip O« U

888.77

monoclinic

P2i/c

a=16.872(4)A o= 90°
b=15.338(3)A B=93.301(2)°
c=15.062(3) A v=90°
3891.3(14) A3

4.1

1.517 Mg/m3

0.71073 A

100(2) K

1744

4219 mm-1

semi-empirical from equivalents
0.237 and 0.154

1.897 to 26.257°

81766

7117 [R(int) = 0.1176]

7117 /0 /442

WR2 =0.1202

R1=0.0468

1.001

4959

0.003 and 0.000

1.574 and -1.971 e/A3
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X-ray Diffraction Data for exo-(L)U(N3)2(Py). (3-exo).

Comment:

The selected crystal was split. The intensity data were corrected by data reduction and
scaling programs.®” Three parts of the structure were disordered. The occupancies of
atoms C(1) and C(2) refined to 0.727(8) and 0.273(8) for the unprimed and primed
atoms, respectively. The occupancies of atoms C(10) — C(15) refined to 0.750(5) and
0.250(5) for the unprimed and primed atoms, respectively. The occupancies of the
toluene molecule refined to 0.660(5) and 0.340(5) for the A- and B-labeled atoms,
respectively. Restraints on the positional parameters of the disordered atoms and the
displacement parameters of all atoms were required.
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Empirical formula

Formula weight
Crystal system
Space group

Unit cell dimensions

Volume

Z,Z

Density (calculated)
Wavelength

Temperature

F(000)

Absorption coefficient
Absorption correction

Max. and min. transmission
Theta range for data collection
Reflections collected
Independent reflections

Data / restraints / parameters
WR(F2 all data)

R(F obsd data)
Goodness-of-fit on F2
Observed data [I > 25(1)]
Largest and mean shift / s.u.
Largest diff. peak and hole

WR2 = { T [WM(Fo2 - 2]/ = [W(Fp 2)2] }112

R1=Z|IFl-1F I/ Z 1R,

(Cas Hag N1g O4 U) - (C7 Hs)
Ca1 Has N0 Qs U
980.91

triclinic

P1
a=9572(5A
b=13791(7)A
c=16.103(2) A
1968.2(15) A3
2.1

1.655 Mg/m?3
0.71073 A
100(2) K

972

4179 mm-?
semi-empirical from equivalents
0.680 and 0.279

1.299 to 31.673°

90881

11866 [R(int) = 0.0574]

11866/ 1149/ 648

WR2 =0.0945

R1=0.0420

0.990

9414

0.003 and 0.000

2.478 and -1.960 e/A3

o= 76.878(2)°
B= 86.987(2)°
= 71.973(2)°
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Figure S12. ORTEP Depiction of exo-(L)U(Ns)2(Py). (3-exo).
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Figure S13. Comparison of Solid-State Structures of Complexes (3) (left) and (3-exo)
(right).
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X-ray Diffraction Data for (L)UO2(Py) (5).

Empirical formula

Formula weight
Crystal system
Space group

Unit cell dimensions

Volume

2,z

Density (calculated)
Wavelength

Temperature

F(000)

Absorption coefficient
Absorption correction

Max. and min. transmission
Theta range for data collection
Reflections collected
Independent reflections

Data / restraints / parameters
WR(F2 all data)

R(F obsd data)
Goodness-of-fit on F2
Observed data [| > 2(1)]
Largest and mean shift / s.u.
Largest diff. peak and hole

WR2 ={ T [WMFo? - F2P] 1 T [WF, 2] }112

R1=Z|IF|-1FII/Z IRl

(C2e Haa N3 O U) - (C D Cla)
CaoHaClaDN20Os U

877.99

monoclinic

C2/c

a=273134)A o=90°
b=92102(13) A B=97.694(2)°
c=26618(4)A v=90°
6635.7(17) A3

8,1

1.758 Mg/m3

0.71073 A

295(2) K

3408

5.179 mm-1

semi-empirical from equivalents
0.860 and 0.297

1.505 to 28.359°

76032

8293 [R(int) = 0.0561]
8293/38/433

wR2 =0.1016

R1=0.0355

0.977

6454

0.001 and 0.000

1.579 and -1.017 e/A3
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