Supporting Information

CFA-4 - a fluorinated metal-organic framework with exchangeable interchannel cations

Julia Fritzsche,^{*a*} Maciej Grzywa,^{*a*} Dmytro Denysenko,^{*a*} V. Bon,^{*b*} Irena Senkovska, ^{*b*} Stefan Kaskel,^{*b*} and Dirk Volkmer ^{**a*}

^a Institute of Physics, Chair of Solid State and Materials Chemistry, Augsburg University, Universitätsstrasse 1, 86159 Augsburg, Germany

^b Department of Inorganic Chemistry, Dresden University of Technology, Bergstrasse 66, 01062 Dresden, Germany

Contents:

1.	Crystallographic data and topology analysis	S2
2.	NMR spectra	S 6
3.	IR spectra	S9
4.	(Variable Temperature) X-Ray Powder Diffraction Pattern	S11
5.	TGA curve	S13
6.	Mass spectra	S14
7.	EDX data	S16
8.	Gas sorption measurements	S17
9.	UV-Vis spectrum	S23
10.	Photoluminescence spectra	S24

^{*} Corresponding author. Fax: +49 (0)821 598–5955; Tel: +49 (0)821 598–3006; E–mail: dirk.volkmer@physik.uni–augsburg.de

1. Single Crystal Structure Analysis of 1,4-bis(3,5-bis(trifluoromethyl)-*1H*-pyrazole-4-yl)benzene ·2MeOH (C₁₆H₆F₁₂N₄ ·2CH₃OH).

1.2MeOH crystallizes in the monoclinic crystal system within the space group C2/m (no. 12). The asymmetric unit consists of one nitrogen, six carbon, three fluoride, one oxygen and six hydrogen atoms accounting for 1/3 of H₂-tfpb and one MeOH molecule. An Ortep-style plot of the asymmetric unit of 1.2MeOH is shown in Fig. S1. While the (CF₃)₂-pyrazole rings of the H₂-tfpb molecule are almost parallel to the (100) plane, the phenyl ring is inclined with respect to the (CF₃)₂-pyrazole rings. The two equatorial planes created by atoms belonging to the (CF₃)₂-pyrazole rings and atoms of the phenyl ring enclose an angle of 57.44(5) °. The O1 and C6 atoms of MeOH are placed on a crystallographic mirror plane (4i in Wyckoff notation).

Fig. S1 Ortep-style plot of the asymmetric unit of **1**·2MeOH. Thermal ellipsoids probability: 50 %.

Compound 1 exhibits layered packing motif. Looking along the *a*-direction, the layers created by H₂-tfpb molecules are separated by solvent molecules. The whole structure is stabilized by hydrogen bridges formed between MeOH molecules and nitrogen atoms of H₂-tfpb. List of the hydrogen bonds for 1·2MeOH is presented in Table S1. The packing diagram of 1·2MeOH along the *a*-direction is shown in Fig. S2.

Fig. S2 Packing diagram of 1.2MeOH with hydrogen bonds shown as intercepted red lines. Hydrogen atoms from H₂-tfpb molecules are shown with 50 % occupation. (In the crystal structure of 1.2MeOH the acidic NH-protons of the H₂-tfpb molecule have been placed in calculated positions (d(NH) = 0.88 Å). Owing to lattice symmetry both nitrogen atoms of each pyrazole ring and oxygen atoms of MeOH molecules appear to be protonated at 50% probability).

DonorHydrogenAcceptor	DonHyd [Å]	HydAcc [Å]	DonAcc [Å]	DHA
O1H1N1»1	0.84	1.95	2.782	173.7°
N1H1AO1	0.88	1.92	2.782	165.1°
O1H1»1N1	0.84	1.95	2.782	173.7°
N1»1H1A»1O1	0.88	1.92	2.782	165.1°
O1»2H1»2N1»4	0.84	1.95	2.782	173.7°
N1»2H1A»2O1»2	0.88	1.92	2.782	165.1°
O1»3H1»3N1»7	0.84	1.95	2.782	173.7°
N1»3H1A»3O1»3	0.88	1.92	2.782	165.1°
O1»2H1»4N1»2	0.84	1.95	2.782	173.7°
N1»4H1A»4O1»2	0.88	1.92	2.782	165.1°
N1»5H1A»5O1»5	0.88	1.92	2.782	165.1°
N1»6H1A»6O1»6	0.88	1.92	2.782	165.1°
O1»3H1»7N1»3	0.84	1.95	2.782	173.7°
N1»7H1A»7O1»3	0.88	1.92	2.782	165.1°

Table S1 Hydrogen bonds for 1.2MeOH

Topology analysis for Cu(I)[CFA-4]

Topology for Sc1 Atom Sc1 links by bridge ligands and has Common vertex with R(A-A)0.5828 (000)V 1 0.3333 0.6667 7.624A 1 0.3333 0.7500 (000)Ti 1 0.6667 7.679A 1 Topology for Sc2 _____ Atom Sc2 links by bridge ligands and has Common vertex with R(A-A)V 1 -0.3333 0.3333 0.4172 (011)7.702A 1 V 1 0.3333 0.6667 0.5828 (000) 1 7.702A Topology for Til Atom Ti1 links by bridge ligands and has Common vertex with R(A-A)0.6651 (110)7.679A 1.0002 0.4916 Sc 1 1 7.679A Sc 1 1.0002 0.5086 0.8349 (101) 1 Sc 1 0.8349 (111) 0.4914 0.4916 7.679A 1 0.8349 (001) Sc 1 0.5084 -0.0002 7.679A 1 Sc 1 0.4914 -0.0002 0.6651 (100)7.679A 1 0.5084 0.5086 0.6651 (000)Sc 1 7.679A 1 Topology for V1 Atom V1 links by bridge ligands and has Common vertex with R(A-A)0.4914 0.9998 7.624A Sc 1 0.6651 (110)1 0.5086 0.6651 (000)Sc 1 0.5084 7.624A 1 0.0002 0.4916 0.6651 (010)7.624A 1 Sc 1 Sc 2 0.4569 1.0000 0.5000 (010)7.702A 1 Sc 2 0.5431 0.5431 0.5000 (110)7.702A 1 Sc 2 0.0000 0.4569 0.5000 (000)7.702A 1 Structural group analysis Structural group No 1 Structure consists of 3D framework with V2TiSc9 Coordination sequences Sc1: 1 2 3 4 5 6 7 8 9 10 Num 2 10 10 46 30 120 54 210 94 330 Cum 3 13 23 69 99 219 273 483 577 907 Sc2: 1 2 3 4 5 6 7 8 9 10 Num 2 10 10 46 30 120 54 210 94 330 Cum 3 13 23 69 99 219 273 483 577 907 Ti1: 1 2 3 4 5 6 7 8 9 10 Num 6 6 30 20 90 42 162 74 282 114 Cum 7 13 43 63 153 195 357 431 713 827 _____ V1: 1 2 3 4 5 6 7 8 9 10 Num 6 6 30 20 90 42 162 74 282 114 Cum 7 13 43 63 153 195 357 431 713 827

TD10=887

Vertex symbols for selected sublattice

Sc1 Point symbol: {8} Sc1 Point symbol with loops: {4} Extended point symbol:[8(4)]

Sc2 Point symbol: {8} Sc2 Point symbol with loops: {4} Extended point symbol:[8(4)]

Ti1 Point symbol: {8^9.12^6} Ti1 Point symbol with loops: {4^9.6^6} Extended point symbol: [8.8.8.8.8.8(2).8(2).8(2).12(8).12(

V1 Point symbol: {8^9.12^6} V1 Point symbol with loops: {4^9.6^6} Extended point symbol:[8.8.8.8.8.8(2).8(2).8(2).12(8).

Point symbol for net: $\{8^9.12^6\}$ $\{8\}3$ Point symbol for net with loops: $\{4^9.6^6\}$ $\{4\}3$ 2,6-c net with stoichiometry (2-c)3(6-c); 2-nodal net

New topology

Fig. S3 Topological representation of Cu(I)[CFA-4].

2. NMR spectra of 1,4-bis(3,5-bis(trifluoromethyl)-*1H*-pyrazole-4-yl)benzene (H₂-tfpb)

Fig. S4 ¹H-NMR spectrum of H₂-tfpb in DMSO-d₆.

Fig. S5 ¹H-NMR spectrum of H₂-tfpb in acetone-d₆.

Fig. S6 ¹⁹F-NMR spectrum of H₂-tfpb in DMSO-d₆.

Fig. S7 ¹⁹F-NMR spectrum of H₂-tfpb in acetone-d₆.

Fig. S8 13 C-NMR spectrum of H₂-tfpb in acetone-d₆.

3. IR- Spectra

Fig. S9 Full-range IR spectra of a) H₂-tfpb; b) Cu(I)[CFA-4].

Fig. S10 IR spectra in the range 2000-400 cm⁻¹ of a) H₂-tfpb; b) Cu(I)[CFA-4].

Fig. S11 IR spectra of Cu(I)[CFA-4]: a) after drying at 300°C; b) fresh sample.

4. X-Ray Powder Diffraction Pattern

Fig. S12 XRPD patterns of Cu(I)[CFA-4] (blue curve), K[CFA-4] (red curve), Ca(0.5)[CFA-4] (green curve) and Cs[CFA-4] (black curve).

Fig. S13 XRPD patterns in the range 3-10° 2θ of **Cu(I)**[**CFA-4**] (blue curve), **K**[**CFA-4**] (red curve), **Ca(0.5)**[**CFA-4**] (green curve) and **Cs**[**CFA-4**] (black curve).

Fig. S14 VTXRPD plots of **Cu(I)**[**Cu₅(tfpb)₃]•xCH₃CN** in the range of 25-450°C. The first XRPD pattern is simulated based on the single crystal X-ray data. *peaks belong to Cu phase (PDF no. 4-836).

Fig. S15 XRPD patterns of simulated Cu(I)[CFA-4] (blue curve), oxidised Cu(I)[CFA-4] (red curve) and reduced Cu(I)[CFA-4] (black curve).

5. TGA curve

Fig. S16 Temperature dependent weight loss of K[CFA-4] under air.

6. Mass spectra

Fig. S17 Mass spectra of H₂-tfpb (TOF MS ESI+).

Mass	Calc. Mass	mDa	PPM	DBE	Form	ula		
483.0475	483.0478	-0.3	-0.5	-1.5	C8	H8	N4	F17
	483.0479	-0.4	-0.8	9.5	C16	H7	N4	F12
	483.0480	-0.5	-0.9	2.0	C13	H9	N	F16
	483.0481	-0.6	-1.2	20.5	C24	H6	N4	F7
	483.0481	-0.6	-1.3	13.0	C21	H8	Ν	F11
	483.0482	-0.7	-1.5	31.5	C32	H5	N4	F2
	483.0483	-0.8	-1.6	24.0	C29	H7	N	F6
	483.0484	-0.9	-1.9	35.0	C37	H6	Ν	F
	483.0422	5.3	11.1	31.5	C35	Hб	F3	
	483.0420	5.5	11.4	20.5	C27	H7	F8	
	483.0420	5.5	11.5	28.0	C30	H5	N3	F4
	483.0419	5.6	11.6	35.5	C33	H3	N6	
	483.0418	5.7	11.7	9.5	C19	H8	F13	3
	483.0418	5.7	11.8	17.0	C22	H6	N3	F9
	483.0418	5.7	11.9	24.5	C25	H4	N6	F5
	483.0417	5.8	12.0	-1.5	C11	H9	F18	3
	483.0416	5.9	12.1	6.0	C14	H7	N3	F14
	483.0416	5.9	12.2	13.5	C17	H5	N6	F10
	483.0414	6.1	12.5	2.5	C9	H6	N6	F15
	483.0540	-6.5	-13.5	2.0	C10	H8	N5	F15
	483.0542	-6.7	-13.8	13.0	C18	H7	N5	F10
	483.0542	-6.7	-13.9	5.5	C15	H9	N2	F14
	483.0543	-6.8	-14.2	24.0	C26	H6	N5	F5
	483.0544	-6.9	-14.2	16.5	C23	H8	N2	F9
	483.0545	-7.0	-14.5	35.0	C34	H5	N5	
	483.0545	-7.0	-14.6	27.5	C31	H7	N2	F4
	483.0359	11.6	24.1	35.5	C36	H4	N2	F

Table S2 Elemental Composition Report of H2-tfpb.

Mass	Calc. Mass	mDa	PPM	DBE	Form	ula		
	483.0357	11.8	24.4	24.5	C28	H5	N2	F6
	483.0357	11.8	24.5	32.0	C31	HЗ	N5	F2
	483.0355	12.0	24.8	13.5	C20	H6	N2	F11
	483.0355	12.0	24.9	21.0	C23	H4	N5	F7
	483.0354	12.1	25.1	2.5	C12	H7	N2	F16
	483.0353	12.2	25.2	10.0	C15	H5	N5	F12
	483.0352	12.3	25.5	-1.0	C7 1	H6	N5	F17
	483.0603	-12.8	-26.5	5.5	C12	H8	N6	F13
	483.0604	-12.9	-26.8	16.5	C20	H7	N6	F8
	483.0605	-13.0	-26.9	9.0	C17	H9	N3	F12
	483.0605	-13.0	-27.0	1.5	C14	H11	FI	16
	483.0606	-13.1	-27.1	27.5	C28	Hб	N6	F3
	483.0606	-13.1	-27.2	20.0	C25	H8	N3	F7
	483.0607	-13.2	-27.3	12.5	C22	H10	F	11
	483.0608	-13.3	-27.5	31.0	C33	H7	N3	F2
	483.0608	-13.3	-27.6	23.5	C30	H9	F6	
	483.0610	-13.5	-28.0	34.5	C38	H8	F	
	483.0296	17.9	37.1	32.0	C34	H4	Ν	F3
	483.0294	18.1	37.4	21.0	C26	H5	N	F8
	483.0294	18.1	37.5	28.5	C29	H3	N4	F4
	483.0293	18.2	37.7	10.0	C18	Hб	Ν	F13
	483.0292	18.3	37.8	17.5	C21	H4	N4	F9
	483.0291	18.4	38.1	-1.0	C10	H7	Ν	F18

7. EDX Data

Table S3 Cu/metal ratios for different **M[CFA-4]** samples, calculated from the data shown in Fig. S18-S20.

Sample	Copper/metal ratio
K[CFA-4]	5.12/1
Ca(0.5)[CFA-4]	10.76/1
Cs[CFA-4]	6.45/1

Elem	Wt % At	% K-Ratio	Z	A	F	
F K K K CuK Total	30.04 57. 7.50 6. 62.46 35. 100.00 100.	38 0.1485 96 0.0686 66 0.5911 00	1.0734 1.0447 0.9450	0.4589 0.8700 1.0014	1.0034 1.0068 1.0000	
Element	Net Inte.	Backgrd	Inte. Er	ror P/B	i.	
F K K K CuK	849.09 325.87 687.29	3.10 0.12 0.96	0.34 0.55 0.38	273.9 2715.5 715.9	0 8 3	

Fig. S18 EDX data for K[CFA-4].

Elem	Wt %	At %	K-Ratio	Z	A	F	
F K CaK CuK Total	27.47 4.02 68.52 100.00 1	55.09 3.82 41.09 .00.00	0.1436 0.0396 0.6530	1.0792 1.0743 0.9513	0.4825 0.9051 1.0019	1.0040 1.0127 1.0000	
Element	: Net In	nte. B	ackgrd	Inte. Er	ror P/B		
F K CaK CuK	749.31 154.21 686.65		1.86 0.52 0.64	0.37 0.81 0.38	402.8 296.5 1072.8	5 6 9	

Fig. S19 EDX data for Ca(0.5)[CFA-4].

Elem Wt % At % K-Ratio Z A F _____ 24.50 13.43 75.50 86.57 100.00 100.00 0.2291 0.9017 1.0150 1.0215 CSL 0.7606 CuK 1.0339 0.9743 1.0000 Total Element Net Inte. Backgrd Inte. Error P/B 0.26 CSL 208.04 0.69 800.15 0.64 CuK 569.22 0.42 889.41

Fig. S20 EDX data for Cs[CFA-4].

8. Gas sorption measurements

Fig. S21 Argon adsorption (blue) and desorption (red) isotherms at 87 K for **Cu(I)**[**CFA-4**] sample heated at 100 °C in vacuum.

Fig. S22 Argon adsorption (red) and desorption (blue) isotherms at 77 K for **Cu(I)**[**CFA-4**] sample heated at 350 °C in vacuum.

The isosteric heats of adsorption were calculated from the measured isotherms (Figs. S23-25) using the Clausius-Clapeyron equation (I). The slopes of linear plots lnP versus 1/RT for different loadings (Fig. S26-28) give the adsorption enthalpies, according to the equation (II).

$$Q_{st} = -R \left(\frac{\partial (\ln P)}{\partial (1/T)} \right)_{\theta} \quad (\mathbf{I}), \, \Theta - \text{surface coverage}$$
$$\ln P = -\frac{Q_{st}}{R} \left(\frac{1}{T} \right) + C \quad (\mathbf{II}), \, C - \text{integration constant}$$

The isosteric heat of O_2 adsorption at zero limit surface coverage (initial heat of adsorption) has been determined using Henry's constants K_H , obtained as a slope from the linear ranges of isotherms at low pressure (Table S4 and Fig. S29). In this range the dependence of amount adsorbed (n) on pressure can be expressed with Henry's law (III). The initial isosteric heat of adsorption is obtained similarly using the Clausius-Clapeyron equation (IV) (Fig. S30).

 $\mathbf{n} = \mathbf{K}_{\mathrm{H}} \bullet \mathbf{P} (\mathbf{III})$

$$\lim_{n\to 0} (Q_{st}) = Q_{st}^0 = R\left(\frac{\partial(\ln K_H)}{\partial(1/T)}\right) (\mathbf{IV})$$

Table S4. Henry's constants for O₂ adsorption on CFA-4 (cm³ g⁻¹ kPa⁻¹)

T [K]	163	173	183
K _H	0.3971	0.2365	0.1534

Fig. S23 O₂ adsorption isotherms for Cu(I)[CFA-4] at different temperatures.

Fig. S24 CO adsorption isotherms for Cu(I)[CFA-4] at different temperatures.

Fig. S25 CO adsorption isotherms for K[CFA-4] at different temperatures.

Fig. S26 lnP versus 1/RT plots for different loadings for O₂ adsorption on Cu(I)[CFA-4].

Fig. S27 lnP versus 1/RT plots for different loadings for CO adsorption on Cu(I)[CFA-4].

Fig. S28 lnP versus 1/RT plots for different loadings for CO adsorption on K[CFA-4].

Fig. S29 Determination of Henry's constants for O₂ adsorption on Cu(I)[CFA-4].

Fig. S30 lnK_H versus 1/RT plot for O₂ adsorption on Cu(I)[CFA-4].

9. UV-Vis spectrum

Fig. S31 UV-Vis spectrum of Cu(I)[CFA-4].

10.Photoluminescence spectra

Fig. S32 Photoluminescence spectra of 1 at room temperature. Dashed line:excitation spectrum (λ_{em} = 312 nm); Continuous line: emission spectrum (λ_{ex} = 245 nm).

Fig. S33 Solid-state photoluminescence spectra for 1 at room temperature. Dashed line: excitation spectrum (λ_{em} = 350 nm); Continuous line: emission spectrum (λ_{ex} = 290 nm).

Fig. S34 Photoluminescence spectra of Cu(I)[CFA-4] at room temperature with different solvents (excitation wavelength 320 nm).