Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Comparisons of MN_2S_2 vs. Bipyridine as Redox-Active Ligands to Manganese and Rhenium in (L--L)M'(CO)₃Cl Complexes

Allen M. Lunsford,^a Kristina F. Goldstein,^a Matthew Cohan,^a Jason A. Denny,^a

Nattamai Bhuvanesh,^a Shengda Ding,^a Michael B. Hall,^a Marcetta Y. Darensbourg*^a

* Corresponding authors

^a Department of Chemistry, Texas A&M University, College Station, Texas, USA

E-mail: marcetta@chem.tamu.edu

|--|

Cyclic Voltammetry

Figure S1. Full Scan of [Ni-Re] at 200 mV/s in DMF referenced to internal $Fc/Fc^+ = 0$. The scan was
initiated in the negative direction7
Figure S2. Full Scan of [Ni-Re] at 200 mV/s in DMF referenced to internal $Fc/Fc^+ = 0$. The scan was
initiated in the positive direction
Figure S3. Full Scan of [Ni-Re] at varied scan rates in DMF referenced to internal $Fc/Fc^+ = 0$ 8
Figure S4. Full Scan of [Fe-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the negative direction
Figure S5. Full Scan of [Fe-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the positive direction
Figure S6. Full Scan of [Fe-Re] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$ 10
Figure S7. Full Scan of [Co-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ 10
Figure S8. Full Scan of [Co-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the positive direction
Figure S9. Full Scan of [Co-Re] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$ 11
Figure S10. Full Scan of [Fe-Mn] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the negative direction
Figure S11. Full Scan of [Fe-Mn] at 200 mV/s in MeCN referenced to internal Fc/Fc ⁺ = 0 initiating the
scan in the positive direction
Figure S12. Full Scan of [Fe-Mn] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$ 13
Figure S13. Isolated scan of [Fe-Mn] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 013$
Figure S14. Full Scan of [Co-Mn] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the negative direction
Figure S15. Full Scan of [Co-Mn] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the positive direction14
Figure S16. Full Scan of [Co-Mn] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$ 15
Figure S17. Full Scan of [Ni-Mn] at 200 mV/s in DMF referenced to internal $Fc/Fc^+ = 0$ initiating the
scan in the negative direction15
Figure S18. Stacked plots of the three Mn containing heterobimetallics. The dotted lines denote the
reduction potential of the free MN_2S_2 metalloligand and the solid black lines denote the reduction
potentials of Mn(bipy)(CO) ₃ Br16
Figure S19. Full scan of [Ni-Re] at 200 mV/s in DMF with 200 equivalents of LiCl referenced to internal
$Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of LiCl and the
orange trace is in the presence of LiCl
Figure S20. Isolated scan of [Ni-Re] at 200 mV/s in DMF with 200 equivalents of LiCl referenced to
internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of LiCl
and the orange trace is in the presence of LiCl
Figure S21. Full scan of [Ni-Re] at 200 mV/s in DMF with 200 equivalents of Et ₄ NCl referenced to
internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of Et_4NCl
and the orange trace is in the presence of $\mathrm{Et}_4\mathrm{NCl}$ 17

Figure S22. Isolated scan of [Ni-Re] at 200 mV/s in DMF with 200 equivalents of Et ₄ NCl referenced to	
internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of Et_4NC	1
and the orange trace is in the presence of Et ₄ NCl	18
Table S1. Reduction potentials of the six new heterobimetallic complexes, the MN ₂ S ₂ starting materials	,
and M'(bipy)(CO) ₃ X. Also represented is the shift in the MN_2S_2 reduction potential upon binding the	
second metal center, and the shift in the Mn/Re based reduction events	18

UV-Vis Spectroscopy

Figure S23. UV-Vis spectrum of [Ni-Re] in DMF at a concentration of 0.5 mM.	19
Figure S24. UV-Vis spectrum of [Co-Re] in DMF at a concentration of 0.5 mM	19
Figure S25. UV-Vis spectrum of [Fe-Re] in DMF at a concentration of 0.5 mM.	20
Figure S26. UV-Vis spectrum of [Fe-Mn] in DMF at a concentration of 0.5 mM.	20
Figure S27. UV-Vis spectrum of [Ni-Mn] in DMF at a concentration of 0.5 mM.	21
Figure S28. UV-Vis spectrum of [Co-Mn] in DMF at a concentration of 0.5 mM.	21
Table S2. Absorbances of the heterobimetallic complexes obtained from the UV-Vis spectra	22

IR Spectroscopy

Crystallography

Figure S37. Thermal ellipsoid plots at 50% probability for [Ni-Re].	25
Figure S38. Thermal ellipsoid plots at 50% probability for [Fe-Re].	25
Figure S39. Thermal ellipsoid plots at 50% probability for [Co-Re]	26
Figure S40. Thermal ellipsoid plots at 50% probability for [Ni-Mn].	26
Figure S41. Thermal ellipsoid plots at 50% probability for [Fe-Mn].	26
Figure S42. Thermal ellipsoid plots at 50% probability for [Co-Mn]	27
Table S5. Crystal data and structure refinement for [Fe-Re].	29
Table S6. Crystal data and structure refinement for [Co-Re].	30
Table S7. Crystal data and structure refinement for [Ni-Mn].	31
✓ L J	

Table S8.	Crystal data and structure refi	inement for [Fe-Mn].	
Table S9.	Crystal data and structure refi	inement for [Co-Mn]	

Computational Chemistry

General Procedures

All reactions and manipulations were performed using standard Schlenk-line and syringe/rubber septa techniques under N₂ or in an Ar atmosphere glovebox. Solvents were purified and degassed via a Bruker solvent system. Reagents were purchased from commercial sources and used as received. The MN_2S_2 complexes were synthesized following previously published procedures; Fe(NO)(bme-dach)¹, Co(NO)(bme-dach)¹, and Ni(bme-dach)². Elemental analyses was performed by Atlantic Microlab, inc., Norcross, Georgia, United States. Electrospray ionization mass spectrometry (ESI-MS) was performed by the Laboratory for Biological Mass Spectrometry at Texas A&M University. Infrared spectra were recorded on a Bruker Tensor 37 spectrometer using a CaF₂ solution cell of 0.2 mm path length. UV-visible spectra were obtained using a Shimadzu UV-2450 spectrophotometer with 1.0 cm path length quartz cells. CW EPR spectrum were recorded using an X-Band Bruker 300E spectrometer. Measurement conditions: Microwave frequency: 9.3701 GHz; Modulation amplitude: 0.3 mT; Microwave power: 0.04mW. Temperature: 298 K. Spectrum were simulated using SpinCount developed by Prof. M. P. Hendrich of Carnegie Mellon University.

Computational Methodology

The functional B3LYP³ was used in Gaussian 09 Revision D1⁴ to execute all the calculations. Triple- ζ 6-311++G(d,p) basis set was used for all non-metal atoms⁵⁻⁷ and Wachters-Hay basis set with diffuses functions and polarization functions was applied, under the designation 6-311++G(d,p) were used for transition metals Fe, Co and Ni.⁸⁻¹⁰ The pseudopotential ECP60MDF and basis set cc-pVTZ-PP¹¹ were applied for Re. The crystal structures of [**Fe-Re**], [**Co-Re**] and [**Ni-Re**] were imported as references. All the stationary points were optimized in gas phase and verified by frequency calculations with appropriate numbers of imaginary vibrations. Thermal corrections and solvation corrections (with SMD model^J, in DMF) were added to calculate Gibbs free energy. The standard reduction potential *E* (vs. Fc^{+/0}) was calculated by the following equation.

$$E = -\frac{G(Red) - G(Ox) + G(Fc^{+}) - G(Fc)}{nF}$$

G is the calculated Gibbs free energy, n is the equivalents of electrons transferred, F is the Faraday constant.

Cyclic Voltammetry

A Bioanalytical Systems 100 electrochemical workstation with a glassy carbon working electrode (0.071 cm^2) and a platinum wire auxiliary electrode was used to conduct the electrochemical analysis of all compounds. A standard three electrode cell under an Ar atmosphere at room temperature was used to obtain all voltammograms. Cyclic voltammograms of all complexes as well as starting materials were recorded in 2 mM solutions with 100 mM [n-Bu₄N][PF₆] as the supporting electrolyte in the solvent indicated in the figure caption. The potentials were measured relative to a Ag/AgNO₃ electrode using a glassy carbon working electrode, and are referenced to Cp₂Fe/Cp₂Fe⁺ (E_{1/2} = 0.00 V).

X-ray Structure Analysis

Low temperature (150 K) X-ray data was obtained on a Bruker Apex-II CCD based diffractometer (Texas A&M University) (Mo sealed X-ray tube, $K_{\alpha} = 0.71073$ Å) for complexes A-D. Crystal samples were coated in mineral oil, affixed to a Nylon loop, and placed under streaming N₂. Space groups were determined on the basis of systematic absences and intensity statistics, and structures were solved by direct methods and refined by full-matrix least-squares on F₂. All non-hydrogen atoms were refined with anisotropic thermal parameters. H atoms were placed at idealized positions and refined with fixed isotropic displacement parameters were employed for all non-hydrogen atoms. The following programs were used: data collection, APEX2;¹² data reduction, SAINT;¹³ absorption correction SADABS;¹⁴ cell refinement SHELXTL;¹⁴ structure solutions, SHELXS-97;¹⁴ and structure refinement, SHELXL-97.¹⁴ The final data presentation and structure plots were generated in X-Seed Version 2.0.¹⁵

Synthesis

Synthesis of **[Ni-Re]**: To a schlenk flask containing 0.277 g of Ni(bme-Dach) (1.0 mmol) and 0.361 g of $\text{Re}(\text{CO})_5\text{Cl}$ (1.0 mmol) was added 50 mL of MeOH. The flask was wrapped in aluminum foil, connected to a gas bubbler, and heated at 60°C for 12 hours. The resulting red/orange solution (containing some suspended product) was cooled and diluted with 150 mL of diethyl ether to precipitate the remaining coral colored solid. Precipitated solid was collected and dried under vacuum to afford 0.495 g of **[Ni-Re]** corresponding to an 85% yield. X-ray quality crystals were grown by slow diffusion of diethyl ether into a concentrated DMF solution of **[Ni-Re]** at 22°C. IR (DMF, cm⁻¹) v(CO) 2010, 1897, 1883. Anal. found (calcd) for ReNiClS₂N₂O₃C₁₂H₁₈: C, 24.97 (24.73); H, 3.09 (3.11); N, 4.97 (4.81).

Synthesis of **[Co-Re]**: To a schlenk flask containing 0.307 g of Co(NO)(bme-Dach) (1.0 mmol) and 0.361 g of Re(CO)₅Cl (1.0 mmol) was added 75 mL of dichloromethane. The flask was wrapped in aluminum foil, connected to a gas bubbler, and heated at reflux for 12 hours. Solvent was removed via vacuum and the resulting brown/green solid was chromatographed on a 12 cm. x 1.5 cm. silica gel column eluting with

10% MeOH in THF. A purple band of Co(NO)(bme-Dach) eluted first followed by **[Co-Re]** as a dark green band which was collected and the solvent removed via vacuum. The resulting dark green solid weighed 0.374 g corresponding to a 61% yield. X-ray quality crystals were grown by cooling a saturated MeCN solution of **[Co-Re]** to -30°C overnight. IR (THF, cm⁻¹) v(CO) 2015, 1907, 1893. Anal. found (calcd) for ReCoClS₂N₃O₄C₁₂H₁₈: C, 23.71 (23.51); H, 3.18 (2.96); N, 6.62 (6.85).

Synthesis of **[Fe-Re]**: To a schlenk flask containing 0.304 g of Fe(NO)(bme-Dach) (1.0 mmol) and 0.361 g of Re(CO)₅Cl (1.0 mmol) was added 75 mL of dichloromethane. The flask was wrapped in aluminum foil, connected to a gas bubbler, and heated at reflux for 12 hours. Solvent was removed via vacuum and the resulting brown/green solid was chromatographed on a 12 cm. x 1.5 cm. silica gel column eluting with 10% MeOH in THF. A green band of Fe(NO)(bme-Dach) eluted first followed by **[Fe-Re]** as a green/brown band which was collected and the solvent removed via vacuum. The resulting green/brown solid weighed 0.35 g corresponding to a 57% yield. X-ray quality crystals were grown by cooling a saturated MeCN solution of **[Fe-Re]** to -30°C overnight. IR (THF, cm⁻¹) v(CO) 2016, 1909, 1892. Anal. found (calcd) for ReFeClS₂N₃O₄C₁₂H₁₈: C, 23.73 (23.63); H, 3.01 (2.97); N, 6.89 (6.89).

Synthesis of **[Ni-Mn]**: To a schlenk flask containing 0.277 g of Ni(bme-Dach) (1.0 mmol) and 0.274 g of $Mn(CO)_5Br$ (1.0 mmol) was added 50 mL of MeOH. The flask was wrapped in aluminum foil, connected to a gas bubbler, and heated at 60°C for 12 hours. The resulting orange solution (containing some suspended orange product) was cooled and diluted with 150 mL of diethyl ether to precipitate the remaining orange solid. Precipitated solid was collected and dried under vacuum to afford 0.495 g of **[Ni-Mn]** corresponding to an 89% yield. X-ray quality crystals were grown by slow diffusion of diethyl ether into a concentrated DMF solution of **[Ni-Mn]** at 22°C. IR (DMF, cm⁻¹) v(CO) 2008, 1917, 1897. Anal. found (calcd) for MnNiBrS₂N₂O₃C₁₂H₁₈: C, 29.76 (29.06); H, 3.74 (3.66); N, 5.84 (5.65).

Synthesis of **[Co-Mn]**: To a schlenk flask containing 0.307 g of Co(NO)(bme-Dach) (1.0 mmol) and 0.274 g of Mn(CO)₅Br (1.0 mmol) was added 75 mL of dichloromethane. The flask was wrapped in aluminum foil, connected to a gas bubbler, and heated at reflux for 12 hours. Solvent was removed via vacuum and the resulting brown/green solid was chromatographed on a 12 cm. x 1.5 cm. silica gel column eluting with 10% MeOH in THF. A purple band of Co(NO)(bme-Dach) eluted first followed by **[Co-Mn]** as a dark green band which was collected and the solvent removed via vacuum. The resulting dark green solid weighed 0.408 g corresponding to a 78% yield. X-ray quality crystals were grown by cooling a saturated MeCN solution of **[Co-Mn]** to -30°C overnight. IR (THF, cm⁻¹) v(CO) 2020, 1927, 1908. Anal. found (calcd) for MnCoBrS₂N₃O₄C₁₂H₁₈: C, 27.92 (27.39); H, 3.25 (3.45); N, 7.62 (7.99).

Synthesis of **[Fe-Mn]**: To a schlenk flask containing 0.304 g of Fe(NO)(bme-Dach) (1.0 mmol) and 0.274 g of Mn(CO)₅Br (1.0 mmol) was added 75 mL of dichloromethane. The flask was wrapped in aluminum foil, connected to a gas bubbler, and heated at reflux for 12 hours. Solvent was removed via vacuum and the resulting brown/green solid was chromatographed on a 12 cm. x 1.5 cm. silica gel column eluting with 10% MeOH in THF. A green band of Fe(NO)(bme-Dach) eluted first followed by **[Fe-Mn]** as a green/brown band which was collected and the solvent removed via vacuum. The resulting green/brown solid weighed 0.356 g corresponding to a 68% yield. X-ray quality crystals were grown by cooling a saturated MeCN solution of **[Fe-Mn]** to -30°C overnight. IR (THF, cm⁻¹) v(CO) 2019, 1930, 1912. Anal. found (calcd) for MnFeBrS₂N₃O₄C₁₂H₁₈: C, 27.12 (27.55); H, 3.31 (3.47); N, 7.80 (8.03).

Figure S1. Full Scan of [Ni-Re] at 200 mV/s in DMF referenced to internal $Fc/Fc^+ = 0$. The scan was initiated in the negative direction.

Figure S2. Full Scan of [Ni-Re] at 200 mV/s in DMF referenced to internal $Fc/Fc^+ = 0$. The scan was initiated in the positive direction.

Figure S3. Full Scan of [Ni-Re] at varied scan rates in DMF referenced to internal $Fc/Fc^+ = 0$.

Figure S4. Full Scan of [Fe-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction.

Figure S5. Full Scan of [Fe-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the positive direction.

Figure S6. Full Scan of [Fe-Re] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$.

Figure S7. Full Scan of [Co-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$.

Figure S8. Full Scan of [Co-Re] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the positive direction.

Figure S9. Full Scan of [Co-Re] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$.

Figure S10. Full Scan of [Fe-Mn] at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction.

Figure S11. Full Scan of **[Fe-Mn]** at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the positive direction.

Figure S12. Full Scan of [Fe-Mn] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$.

Figure S13. Isolated scan of [Fe-Mn] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$.

Figure S14. Full Scan of **[Co-Mn]** at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction.

Figure S15. Full Scan of **[Co-Mn]** at 200 mV/s in MeCN referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the positive direction.

Figure S16. Full Scan of [Co-Mn] at varied scan rates in MeCN referenced to internal $Fc/Fc^+ = 0$.

Figure S17. Full Scan of [Ni-Mn] at 200 mV/s in DMF referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction.

Figure S18. Stacked plots of the three Mn containing heterobimetallics. The dotted lines denote the reduction potential of the free MN_2S_2 metalloligand and the solid black lines denote the reduction potentials of Mn(bipy)(CO)₃Br.

Figure S19. Full scan of **[Ni-Re]** at 200 mV/s in DMF with 200 equivalents of LiCl referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of LiCl and the orange trace is in the presence of LiCl.

Figure S20. Isolated scan of **[Ni-Re]** at 200 mV/s in DMF with 200 equivalents of LiCl referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of LiCl and the orange trace is in the presence of LiCl.

Figure S21. Full scan of **[Ni-Re]** at 200 mV/s in DMF with 200 equivalents of Et_4NCl referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of Et_4NCl and the orange trace is in the presence of Et_4NCl .

V vs. Fc/Fc⁺

Figure S22. Isolated scan of **[Ni-Re]** at 200 mV/s in DMF with 200 equivalents of Et_4NCl referenced to internal $Fc/Fc^+ = 0$ initiating the scan in the negative direction. The blue trace is in the absence of Et_4NCl and the orange trace is in the presence of Et_4NCl .

Table S1. Reduction potentials of the six new heterobimetallic complexes, the MN_2S_2 starting materials, and M'(bipy)(CO)₃X. Also represented is the shift in the MN_2S_2 reduction potential upon binding the second metal center, and the shift in the Mn/Re based reduction events.

	Reduction Events		$\Delta E_{\text{Re/Mn}}$
[Ni-Re]	-2.12 V, -2.43 V, -2.67 V	0.22 V	0.65 V
[Fe-Re]	-1.17 V	0.46 V	>1.08 V
[Co-Re]	-1.21 V	0.41 V	>1.08 V
Re(bipy)(CO) ₃ Cl	-1.78 V, -2.12 V	-	-
[Ni-Mn]	-1.95 V, -2.7 V	0.39 V	1.03 V
[Fe-Mn]	-1.30 V, -1.77 V, -2.51 V, -2.67 V	0.33 V	0.84 V
[Co-Mn]	-1.30 V, -2.48 V	0.32 V	0.81 V
Mn(bipy)(CO) ₃ Br	-1.67 V, -1.87 V	-	-
FeNO(bme-dach)	-1.63 V	-	-
CoNO(bme-dach)	-1.62 V	-	-
Ni(bme-Dach)	-2.34 V	-	-

Figure S23. UV-Vis spectrum of [Ni-Re] in DMF at a concentration of 0.5 mM.

Figure S24. UV-Vis spectrum of [Co-Re] in DMF at a concentration of 0.5 mM.

Figure S25. UV-Vis spectrum of [Fe-Re] in DMF at a concentration of 0.5 mM.

Figure S26. UV-Vis spectrum of [Fe-Mn] in DMF at a concentration of 0.5 mM.

Figure S27. UV-Vis spectrum of [Ni-Mn] in DMF at a concentration of 0.5 mM.

Figure S28. UV-Vis spectrum of [Co-Mn] in DMF at a concentration of 0.5 mM.

	Wavelength (nm)
[Ni-Re]	353, 491
[Fe-Re]	425, 610
[Co-Re]	420, 591
[Ni-Mn]	406, 495
[Fe-Mn]	357, 402, 620
[Co-Mn]	401, 546
Ni(bmeDach)	457
Mn(bipy)(CO) ₃ Br	415
Re(bipy)(CO) ₃ Cl	330

Figure S29. IR Spectrum of [Ni-Re] in DMF.

Figure S30. IR Spectrum of NiDacoRe in DMF.

Figure S31. IR Spectrum of [Fe-Re] in THF.

Figure S32. IR Spectrum of [Co-Re] in THF.

Figure S33. IR Spectrum of [Ni-Mn] in DMF.

Figure S34. IR Spectrum of NiDacoMn in DMF.

Figure S35. IR Spectrum of [Fe-Mn] in THF.

Figure S36. IR Spectrum of [Co-Mn] in THF.

	CO (cm ⁻¹)	NO (cm^{-1})
[Ni-Re]	2010, 1897, 1883	
[Fe-Re]	2016, 1909, 1892	1703
[Co-Re]	2015, 1907, 1893	1647
Re(bipy)(CO) ₃ Cl	2019, 1914, 1893	
[Ni-Mn]	2008, 1917, 1897	
[Fe-Mn]	2019, 1930, 1912	1697
[Co-Mn]	2020, 1927, 1908	1642
Mn(bipy)(CO) ₃ Br	2023, 1932, 1915	
FeNO(bme-dach)	-	1649
CoNO(bme-dach)	-	1594

Table S3. List of v(CO) and v(NO) stretching frequencies of the heterobimetallic complexes, the MN_2S_2 starting materials and the analogous bipy complexes.

Figure S37. Thermal ellipsoid plots at 50% probability for [Ni-Re].

Figure S38. Thermal ellipsoid plots at 50% probability for [Fe-Re].

Figure S39. Thermal ellipsoid plots at 50% probability for [Co-Re].

Figure S40. Thermal ellipsoid plots at 50% probability for [Ni-Mn].

Figure S41. Thermal ellipsoid plots at 50% probability for [Fe-Mn].

Figure S42. Thermal ellipsoid plots at 50% probability for [Co-Mn].

Table S4. Crystal data and structure refinement for [Ni-Re].

Identification code	nireb	nireb	
Empirical formula	C12 H18 Cl N2 Ni O3	C12 H18 Cl N2 Ni O3 Re S2	
Formula weight	582.76	582.76	
Temperature	110.15 K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 12.2999(4) Å	□= 90°.	
	b = 12.3134(4) Å	□= 90°.	
	c = 10.9388(6) Å	$\Box = 90^{\circ}.$	
Volume	1656.72(12) Å ³		
Z	4		
Density (calculated)	2.336 Mg/m ³	2.336 Mg/m ³	
Absorption coefficient	19.433 mm ⁻¹		
F(000)	1120		
Crystal size	0.12 x 0.03 x 0.01 mm	0.12 x 0.03 x 0.01 mm ³	
Theta range for data collection	5.409 to 60.754°.		
Index ranges	-13<=h<=13, -13<=k<=13, -12<=l<=12		
Reflections collected	32269		
Independent reflections	1328 [R(int) = 0.0769]		
Completeness to theta = 67.679°	84.4 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.4613 and 0.2122	0.4613 and 0.2122	
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1328 / 37 / 110		
Goodness-of-fit on F ²	1.102		
Final R indices [I>2sigma(I)]	R1 = 0.0305, wR2 = 0.	R1 = 0.0305, wR2 = 0.0740	
R indices (all data)	R1 = 0.0318, $wR2 = 0$.	R1 = 0.0318, wR2 = 0.0746	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	1.203 and -1.280 e.Å ⁻³	1.203 and -1.280 e.Å ⁻³	

Table S5. Crystal data and structure refinement for [Fe-Re].

Identification code	fenore	fenore	
Empirical formula	C12 H18 Cl Fe N3 O4 R	C12 H18 Cl Fe N3 O4 Re S2	
Formula weight	609.91	609.91	
Temperature	110.0 K		
Wavelength	0.71073 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 18.8370(8) Å	$\Box = 90^{\circ}.$	
	b = 10.3101(4) Å	$\Box = 90^{\circ}.$	
	c = 9.3359(4) Å	$\Box = 90^{\circ}.$	
Volume	1813.14(13) Å ³		
Z	4		
Density (calculated)	2.234 Mg/m ³		
Absorption coefficient	7.869 mm ⁻¹	7.869 mm ⁻¹	
F(000)	1172	1172	
Crystal size	0.25 x 0.25 x 0.1 mm ³	0.25 x 0.25 x 0.1 mm ³	
Theta range for data collection	3.653 to 32.446°.		
Index ranges	-28<=h<=27, -15<=k<=15, -14<=l<=13		
Reflections collected	30754		
Independent reflections	3304 [R(int) = 0.0580]	3304 [R(int) = 0.0580]	
Completeness to theta = 26.000°	99.6 %	99.6 %	
Absorption correction	Semi-empirical from equ	Semi-empirical from equivalents	
Max. and min. transmission	0.7464 and 0.3082	0.7464 and 0.3082	
Refinement method	Full-matrix least-squares	Full-matrix least-squares on F ²	
Data / restraints / parameters	3304 / 0 / 121	3304 / 0 / 121	
Goodness-of-fit on F ²	1.123	1.123	
Final R indices [I>2sigma(I)]	R1 = 0.0240, wR2 = 0.0	R1 = 0.0240, $wR2 = 0.0546$	
R indices (all data)	R1 = 0.0288, wR2 = 0.0	R1 = 0.0288, $wR2 = 0.0563$	
Extinction coefficient	n/a	n/a	
Largest diff. peak and hole	2.432 and -0.984 e.Å-3	2.432 and -0.984 e.Å ⁻³	

Table S6. Crystal data and structure refinement for [Co-Re].

Identification code	CodachRe	CodachRe		
Empirical formula	C16 H26 Cl Co N3 O5	C16 H26 Cl Co N3 O5 Re S2		
Formula weight	685.10	685.10		
Temperature	110(2) K	110(2) K		
Wavelength	1.54178 Å			
Crystal system	Monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions	a = 8.4344(4) Å	$\Box = 90^{\circ}.$		
	b = 22.0021(10) Å	$\Box = 97.361(2)^{\circ}.$		
	c = 11.9816(8) Å	$\Box = 90^{\circ}.$		
Volume	2205.2(2) Å ³			
Z	4	4		
Density (calculated)	2.064 Mg/m ³	2.064 Mg/m ³		
Absorption coefficient	19.640 mm ⁻¹	19.640 mm ⁻¹		
F(000)	1336	1336		
Crystal size	0.575 x 0.025 x 0.025 ı	0.575 x 0.025 x 0.025 mm ³		
Theta range for data collection	4.018 to 63.779°.	4.018 to 63.779°.		
Index ranges	-9<=h<=9, -25<=k<=2	-9<=h<=9, -25<=k<=25, -13<=l<=13		
Reflections collected	41925	41925		
Independent reflections	3597 [R(int) = 0.0475]	3597 [R(int) = 0.0475]		
Completeness to theta = 63.779°	99.3 %	99.3 %		
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents		
Max. and min. transmission	0.7524 and 0.3256	0.7524 and 0.3256		
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F^2		
Data / restraints / parameters	3597 / 0 / 256	3597 / 0 / 256		
Goodness-of-fit on F ²	1.125	1.125		
Final R indices [I>2sigma(I)]	R1 = 0.0255, wR2 = 0.	R1 = 0.0255, $wR2 = 0.0646$		
R indices (all data)	R1 = 0.0278, wR2 = 0.	R1 = 0.0278, WR2 = 0.0698		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.582 and -1.504 e.Å ⁻³			

Table S7. Crystal data and structure refinement for [Ni-Mn].

Identification code	NidachMn	
Empirical formula	C12 H18 Br Mn N2 Ni O3 S2	
Formula weight	495.96	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pnma	
Unit cell dimensions	$a = 12.4666(8) \text{ Å}$ $\Box = 90^{\circ}.$	
	$b = 12.2823(7) \text{ Å}$ $\Box = 90^{\circ}.$	
	$c = 10.8128(6) \text{ Å}$ $\Box = 90^{\circ}.$	
Volume	1655.64(17) Å ³	
Z	4	
Density (calculated)	1.990 Mg/m ³	
Absorption coefficient	4.576 mm ⁻¹	
F(000)	992	
Crystal size	0.168 x 0.100 x 0.100 mm ³	
Theta range for data collection	2.493 to 27.520°.	
Index ranges	-16<=h<=16, -15<=k<=15, -14<=l<=14	
Reflections collected	24026	
Independent reflections	1994 [R(int) = 0.0780]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.6576 and 0.5136	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1994 / 3 / 119	
Goodness-of-fit on F ²	1.085	
Final R indices [I>2sigma(I)]	R1 = 0.0319, $wR2 = 0.0763$	
R indices (all data)	R1 = 0.0432, $wR2 = 0.0814$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.553 and -0.687 e.Å ⁻³	

Table S8. Crystal data and structure refinement for [Fe-Mn].

Identification code	femnbr	femnbr	
Empirical formula	C12 H18 Br Fe Mn N3	C12 H18 Br Fe Mn N3 O4 S2	
Formula weight	523.11	523.11	
Temperature	110.15 K		
Wavelength	1.54178 Å		
Crystal system	Orthorhombic		
Space group	Pnma		
Unit cell dimensions	a = 18.6248(15) Å	□=90°.	
	b = 10.8713(9) Å	$\Box = 90^{\circ}.$	
	c = 9.1657(7) Å	$\Box = 90^{\circ}.$	
Volume	1855.8(3) Å ³		
Z	4	4	
Density (calculated)	1.872 Mg/m ³	1.872 Mg/m ³	
Absorption coefficient	16.632 mm ⁻¹	16.632 mm ⁻¹	
F(000)	1044	1044	
Crystal size	0.08 x 0.07 x 0.01 mm ³	0.08 x 0.07 x 0.01 mm ³	
Theta range for data collection	4.748 to 60.719°.	4.748 to 60.719°.	
Index ranges	-21<=h<=21, -12<=k<=	-21<=h<=21, -12<=k<=12, -10<=l<=10	
Reflections collected	22616	22616	
Independent reflections	1491 [R(int) = 0.0805]	1491 [R(int) = 0.0805]	
Completeness to theta = 67.679°	84.7 %	84.7 %	
Absorption correction	Semi-empirical from ec	Semi-empirical from equivalents	
Max. and min. transmission	0.7519 and 0.4851	0.7519 and 0.4851	
Refinement method	Full-matrix least-square	Full-matrix least-squares on F ²	
Data / restraints / parameters	1491 / 0 / 121	1491 / 0 / 121	
Goodness-of-fit on F ²	1.172	1.172	
Final R indices [I>2sigma(I)]	R1 = 0.0432, wR2 = 0.0	R1 = 0.0432, $wR2 = 0.0897$	
R indices (all data)	R1 = 0.0484, wR2 = 0.0	R1 = 0.0484, WR2 = 0.0917	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.773 and -0.515 e.Å ⁻³	0.773 and -0.515 e.Å ⁻³	

Table S9. Crystal data and structure refinement for [Co-Mn].

Identification code	CodachMn	CodachMn		
Empirical formula	C24 H36 Br2 Co2 Mn	C24 H36 Br2 Co2 Mn2 N6 O8 S4		
Formula weight	1052.39	1052.39		
Temperature	150(2) K	150(2) K		
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/n$			
Unit cell dimensions	a = 7.5578(12) Å	$\Box = 90^{\circ}.$		
	b = 14.564(2) Å	$\Box = 90.553(3)^{\circ}.$		
	c = 32.747(5) Å	$\Box = 90^{\circ}.$		
Volume	3604.5(10) Å ³			
Z	4	4		
Density (calculated)	1.939 Mg/m ³	1.939 Mg/m ³		
Absorption coefficient	4.091 mm ⁻¹	4.091 mm ⁻¹		
F(000)	2096	2096		
Crystal size	0.430 x 0.060 x 0.060	0.430 x 0.060 x 0.060 mm ³		
Theta range for data collection	1.530 to 27.567°.	1.530 to 27.567°.		
Index ranges	-9<=h<=9, -18<=k<=1	-9<=h<=9, -18<=k<=18, -42<=l<=42		
Reflections collected	90482	90482		
Independent reflections	8308 [R(int) = 0.0565]	8308 [R(int) = 0.0565]		
Completeness to theta = 25.242°	100.0 %	100.0 %		
Absorption correction	Semi-empirical from e	Semi-empirical from equivalents		
Max. and min. transmission	0.7914 and 0.2722	0.7914 and 0.2722		
Refinement method	Full-matrix least-squar	Full-matrix least-squares on F ²		
Data / restraints / parameters	8308 / 0 / 433	8308 / 0 / 433		
Goodness-of-fit on F ²	1.087	1.087		
Final R indices [I>2sigma(I)]	R1 = 0.0332, wR2 = 0	R1 = 0.0332, $wR2 = 0.0825$		
R indices (all data)	R1 = 0.0416, wR2 = 0	R1 = 0.0416, $wR2 = 0.0892$		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	0.826 and -1.077 e.Å ⁻³			

Figure S43. Spin density (isovalue: 0.0004) plot for [**Fe-Re**]. (Spin densities: Fe(NO): 0.911 (in which Fe: 1.907; NO: - 0.996 as they are antiferromagnetically coupled); Re: 0.035; other atoms: 0.054).

Tuble STo. The calculated CO stretening nequencies (unseared).				
Species	υ _{co} / cm ⁻¹	Species	υ _{co} / cm ⁻¹	Δ υ _{AVG} / cm ⁻¹
[Fe-Re]	1981, 1992, 2084	[Fe-	1943, 1946, 2054	38
		Re] [_]		
[Co-Re]	1981, 1991, 2083	[Co-	1944, 1947, 2054	37
		Re] [_]		
[Ni-Re]	1976, 1988, 2082	[Ni-Re] [_]	1935, 1939, 2047	42

Table S10. The calculated CO stretching frequencies (unscaled).

References

 Chiang, C.-Y.; Lee, J.; Dalrymple, C.; Sarahan, M. C.; Reibenspies, J. H.; Darensbourg, M. Y., Synthesis and Molecular Structures of Mononitrosyl (N2S2)M(NO) Complexes (M = Fe, Co). *Inorg. Chem.* 2005, 44 (24), 9007-9016.

2. Smee, J. J.; Miller, M. L.; Grapperhaus, C. A.; Reibenspies, J. H.; Darensbourg, M. Y., Subtle Bite-Angle Influences on N2S2Ni Complexes. *Inorg. Chem.* **2001**, *40* (14), 3601-3605.

3. Becke, A. D., Density-functional thermochemistry. III. The role of exact exchange. *J. Chem. Phys.* **1993**, *98* (7), 5648-5652.

4. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Gaussian, Inc.: Wallingford, CT, USA, 2009. 5. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. *J. Chem. Phys.* **1980**, *72* (1), 650-654.

6. McLean, A. D.; Chandler, G. S., Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. *J. Chem. Phys.* **1980**, *72* (10), 5639-5648.

7. Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. V. R., Efficient diffuse functionaugmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li–F. *J. Comput. Chem.* **1983**, *4* (3), 294-301.

8. Wachters, A. J. H., Gaussian Basis Set for Molecular Wavefunctions Containing Third-Row Atoms. *J. Chem. Phys.* **1970**, *52* (3), 1033-1036.

9. Hay, P. J., J. Chem. Phys. **1977**, 66, 4377-4384.

10. Raghavachari, K.; Trucks, G. W., J. Chem. Phys. **1989**, *91*, 1062-1065.

11. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *The Journal of Physical Chemistry B* **2009**, *113* (18), 6378-6396.

12. APEX2, Bruker AXS Inc., Madison, WI, 2007.

- 13. SAINT, Bruker AXS Inc., Madison, WI, 2007.
- 14. Sheldrick, G., A short history of SHELX. *Acta Crystallographica Section A* **2008**, *64* (1), 112-122.

15. Barbour, L. J., J. Supramol. Chem. **2003**, *1*, 189-191.