Supplementary Information

for
Vibrational Circular Dichroism and Single Crystal X-Ray Diffraction Analyses of $[\operatorname{Ir}(\mathbf{b z q}) \mathbf{2}(\mathbf{p h e n})]^{+}(\mathbf{b z q}=$ benzo[h]quinoline; $\mathbf{p h e n}=\mathbf{1 , 1 0 - p h e n a n t h r o l i n e})$: Absolute Configuration and Role of $\mathbf{C H}-\pi$ Interaction in Molecular Packing

Kazuyoshi Takimoto, ${ }^{a}$ Yutaka Watanabe, ${ }^{a}$ Shigeki Mori, ${ }^{\text {b }}$ and Hisako Sato ${ }^{\text {a* }}$
${ }^{\text {a }}$ Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
${ }^{\text {b }}$ Advanced Research Support Center, Ehime University, Matsuyama 790-8577, Japan

Contents:

1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathbf{C N M R}, \mathrm{MS}$ data and elemental analysis of $\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\mathrm{phen})\right] \mathrm{ClO}_{4}$
2. Optical resolution of $\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\right.$ phen $\left.)\right] \mathrm{ClO}_{4}$
3. X-Ray analysis of racemic $[\operatorname{Ir}(\mathbf{b z q}) 2($ phen $)] \mathrm{ClO}_{4} \quad$ and $\Delta-[\operatorname{Ir}($ bzq $) 2($ phen $)] O C O C F 3$

S1. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, MS data and elemental analysis of $[\operatorname{Ir}(\mathbf{b z q}) 2(\mathrm{phen})] \mathrm{ClO}_{4}$

$\delta \mathrm{H}\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) 6.42(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H} 7), 7.23(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}, \mathrm{H} 8), 7.32$ $(2 \mathrm{H}, \mathrm{dd}, J=8.0$ and $5.0 \mathrm{~Hz}, \mathrm{H} 3), 7.58(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H} 9), 7.75(2 \mathrm{H}, \mathrm{dd}, J=8.5$ and $5.0 \mathrm{~Hz}, \mathrm{H}{ }^{\prime}$), 7.81 ($2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H} 5$), $7.87(2 \mathrm{H}, \mathrm{dd}, J=5.0$ and $1.0 \mathrm{~Hz}, \mathrm{H} 4), 7.96$ ($2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{H} 6$), 8.26 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H} 5$ '), 8.27 (2 H , dd, $J=5.0$ and $1.0 \mathrm{~Hz}, \mathrm{H} 4$ '), 8.38 ($2 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.0 \mathrm{~Hz}, \mathrm{H} 2$), $8.68(2 \mathrm{H}, \mathrm{dd}, J=8.0$ and $1.0 \mathrm{~Hz}, \mathrm{H} 2$ '); $\delta \mathrm{C}(125 \mathrm{~Hz}$, $\mathrm{CD}_{3} \mathrm{CN}$) 121.5 (C9), 123.2 (C3), 125.1 (C5), 127.6 (C3'), 128.2 (C4a), 129.2 (C5'), 130.0 (C7), 130.6 (C6), 130.7 (C8), 132.6 (C4’a), 135.3 (C6a), 138. 3(C2), 139.5 (C2’), 141.8 (C10a), 147.5 (C1a), 148.2 (C1’a), 149.8 (C4), 152.7 (C4’), 158.0 (C10); LRMS(FAB $\left.{ }^{+}, 3-\mathrm{NBA}\right), m / z=729(\mathrm{M}+1)$; Anal. Found: $\mathrm{C}, 54.21 ; \mathrm{H}, 3.46 ; \mathrm{N}, 6.80$. Calc. for $\mathrm{IrC}_{38} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{ClO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}\left(\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\right.\right.$ phen $\left.\left.)\right] \mathrm{ClO}_{4}\right): \mathrm{C}, 53.93 ; \mathrm{H}, 3.10 ; \mathrm{N}, 6.62 \%$.

Figure S1-1 ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\right.$ phen $\left.)\right] \mathrm{ClO}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S1-2 ${ }^{13} \mathrm{C}$ NMR spectrum of $\left[\mathrm{Ir}(\mathrm{bzq})_{2}(\right.$ phen $\left.)\right] \mathrm{ClO}_{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

S2. Optical resolution of $\left.[\operatorname{Ir}(\mathbf{b z q}))_{2}(\mathbf{p h e n})\right] \mathrm{ClO}_{4}$

Figure S2 Chromatogram for optical resolution of $\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\mathrm{phen})\right] \mathrm{ClO}_{4}$. An eluting solvent was $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{CF}_{3} \mathrm{COOH} / \mathrm{NH}\left(\mathrm{CH}_{2} \mathrm{CH}_{3}\right)_{2}=100 / 0.1 / 0.1(\mathrm{~V} / \mathrm{V} / \mathrm{V})$. A flow rate was $2.5 \mathrm{mLmin}^{-1}$ and the monitoring wavelength was 430 nm . The used column was a CHIRALPACK IA (Daicel, Japan).

S3. X-Ray analysis of racemic $\left.[\operatorname{Ir}(\mathrm{bzq}))_{2}(\mathrm{phen})\right] \mathrm{ClO}_{4}$ and $\Delta-\left[\operatorname{Ir}(\text { bzq })_{2}(\right.$ phen $\left.)\right] \mathrm{OCOCF}_{3}$

Figure S3-1 An ORTEP drawing of racemic $\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\mathrm{phen})\right] \cdot \mathrm{ClO}_{4}$ with a numbering scheme of atoms. The thermal ellipsoids are scaled to the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity.

Table S3-1 Selected bond distances (\AA) and angles (deg) of racemic $\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\right.$ phen $\left.)\right] \cdot \mathrm{ClO}_{4}$.

		Distances (\AA)	
Ir1 - N1	$2.144(2)$	Ir1 - N2	$2.143(2)$
Ir1 - N3	$2.061(2)$	Ir1 - N4	$2.054(2)$
Ir1 - C23	$2.017(3)$	Ir1 - C36	$2.017(2)$
		Angles (deg)	
N1 - Ir1 - N2	$77.84(8)$	$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 3$	$93.40(9)$
$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 4$	$93.91(8)$	$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{C} 23$	$171.71(8)$
$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{C} 36$	$97.84(9)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 3$	$91.08(8)$
$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 4$	$95.81(8)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{C} 23$	$95.64(9)$
$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{C} 36$	$174.84(9)$	$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{N} 4$	$170.87(8)$
$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{C} 23$	$81.52(10)$	$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{C} 36$	$92.00(9)$
$\mathrm{N} 4-\mathrm{Ir} 1-\mathrm{C} 23$	$91.82(10)$	$\mathrm{N} 4-\mathrm{Ir} 1-\mathrm{C} 36$	$81.58(10)$
$\mathrm{C} 23-\mathrm{Ir} 1-\mathrm{C} 36$	$88.91(10)$		

Figure S3-2 An ORTEP drawing of Δ-[$\left.\operatorname{Ir}(\mathrm{bzq})_{2}(\mathrm{phen})\right] \cdot \mathrm{OCOCF}_{3}$ with a numbering scheme of atoms. The thermal ellipsoids are scaled to the 50% probability level. Hydrogen atoms and solvent molecules are omitted for clarity. The counter anion of trifluoroacetate was disordered over two positions with an occupancy ratio of $0.505(10)$: $0.495(10)$.

Table S3-2 Selected bond distances (\AA) and angles (deg) of $\Delta-\left[\operatorname{Ir}(\mathrm{bzq})_{2}(\mathrm{phen})\right] \cdot \mathrm{OCOCF}_{3}$.

Distances (\AA)

Ir1 - N1	$2.141(5)$	Ir1 - N2	$2.139(5)$
Ir1 - N3	$2.055(5)$	Ir1 - N4	$2.070(5)$
Ir1 - C23	$2.020(5)$	Ir1 - C36	$2.019(6)$
		Angles (deg	
N1 - Ir1 - N2	$77.91(18)$	$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 3$	$95.00(19)$
$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{N} 4$	$89.44(18)$	$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{C} 23$	$173.57(19)$
$\mathrm{N} 1-\mathrm{Ir} 1-\mathrm{C} 36$	$95.8(2)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 3$	$90.13(18)$
$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{N} 4$	$94.03(18)$	$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{C} 23$	$96.81(19)$
$\mathrm{N} 2-\mathrm{Ir} 1-\mathrm{C} 36$	$172.2(2)$	$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{N} 4$	$174.48(19)$
$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{C} 23$	$81.2(2)$	$\mathrm{N} 3-\mathrm{Ir} 1-\mathrm{C} 36$	$95.0(2)$
$\mathrm{N} 4-\mathrm{Ir} 1-\mathrm{C} 23$	$94.6(2)$	$\mathrm{N} 4-\mathrm{Ir} 1-\mathrm{C} 36$	$81.3(2)$
$\mathrm{C} 23-\mathrm{Ir} 1-\mathrm{C} 36$	$89.8(2)$		

