Electronic Supplementary Information for

A second-order nonlinear optical material with 5-fold interpenetrating diamondoid framework based on two achiral precursors: spontaneous resolution to absolute chiral induction

Zhenzhen Shi, Ling Qin and Hegen Zheng*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.

E-mail: zhenghg@nju.edu.cn, Fax: +86 25-83314502

Fig. S1 The conformation of TTPA ligand of $\Delta\text{-}1$ and $\Lambda\text{-}1$

Fig. S2 The coordination modes of auxiliary ligands in Δ -1 and Λ -1

Fig. S3 Two kinds of left- or right-handed helical chains labeled R3 and R4 constructed by Zn(II) ions, TTPA and TPDC²⁻ ligands in Δ -1 (left) and labeled L3 and L4 in Λ -1 (right)

Fig. S4 The solid-state CD spectra of Δ -1 and Λ -1 induced by (*S*)- or (*R*)-propane-1,2diol respectively show the opposite Cotton effects

Fig. S5 Powder X-ray diffraction patterns of racemate Δ -1 and Λ -1

Fig. S6 Photoluminescence emission spectra of racemate Δ -1 and Λ -1 at room temperature

Fig. S7 Phase-matching curve for racemate Δ -1 and Λ -1. The curve drawn is to guide the eye and not a fit to the data.

Materials and methods

All chemicals and solvents except TTPA and H₂TPDC ligand were of reagent-grade quality from commercial sources and were used without further purification. The tritopic ligand tris(4-(1H-1,2,4-triazol-1-yl)phenyl)amine (TTPA) was prepared by the copper-catalyzed carbon-nitrogen bond cross-coupling reaction between tris(4bromophenyl)amine and 1,2,4-triazole using Ullmann condensation methods based on previous literature with proper modifications.^{S1} The V-shaped ligand (1,1':3',1"terphenyl)-4,4"-dicarboxylic acid (H₂TPDC) was prepared bv the tetra(triphenylphosphine) palladium(0)-catalyzed Suzuki coupling reaction between 1,3-dibromobenzene and (4-(methoxycarbonyl)phenyl)boronic acid and further hydrolysis based on previous literature with proper modifications.⁵² The IR absorption spectra of these complexes were recorded in the range of 400-4000 cm⁻¹ by means of a Nicolet (Impact 410) spectrometer with KCl pellets. Element analyses (C, H, N) were carried out on a Perkin-Elmer model 240C analyzer. PXRD measurements were performed on a Bruker D8 Advance X-ray diffractometer using Cu-K α radiation (λ = 0.15418 nm), in which the X-ray tube was operated at 40 kV and 30 mA. Thermogravimetric analysis was performed on a Perkin Elmer thermogravimetric analyzer from room temperature to 800 °C with a heating rate of 20 K·min⁻¹ under N₂ atmosphere. Luminescent spectra were recorded with a SHIMAZU VF-320 X-ray fluorescence spectrophotometer at room temperature. The sieved urea powders were used as reference materials to assume the effect. A pulsed Q-switched Nd:YAG laser at a wavelength of 1064 nm was used to generate a SHG signal. The backscattered SHG light was collected by a spherical concave mirror and passed through a filter that transmits only 532 nm radiation. The powder samples (50mg) were ground and sieved into particle size ranges (< 55, 55-95, 95-105, 105-145, 145-205, 205-265, and 265-335 μ m).

Crystal structure determination

Single crystals of Δ -1 and Λ -1 were prepared by the methods described in the synthetic procedure. Their crystal structures were determined by single-crystal X-ray analyses. Data collections were performed using a Bruker D8 Venture diffractometer with Mo-K α radiation with an φ - ω mode ($\lambda = 0.71073$ Å). The structures were solved with direct methods using the SHELXTL program^{S3} and refined anisotropically with SHELX2016 using full-matrix least-squares procedures. In the crystal X-ray structure analysis, some residual electron densities of Δ -1 and Λ -1 were observed within the pores, and assignment to specific molecules cannot be made. They were removed by the SQUEEZE routine in PLATON.

Preparation of the Δ -1 and Λ -1

Synthesis of racemate Δ -1 and Λ -1. A mixture of TTPA (4.46 mg, 0.01 mmol), H₂TPDC (3.19 mg, 0.01 mmol), and Zn(NO₃)₂·6H₂O (14.85 mg, 0.05 mmol) was dissolved in 4 mL of DMA/H₂O (2:2, v/v). The final mixture was placed in a Teflon vessel (12 mL) under autogenous pressure and heated at 85 °C for 3 days and then cooled to room temperature over 24 h. Colorless rod-shaped crystals of Δ -1 and Λ -1 were obtained, dried in air and collected in 42% yield (based on Zn(II) salt).

Synthesis of Δ -1. A mixture of TTPA (4.46 mg, 0.01 mmol), H₂TPDC (3.19 mg, 0.01 mmol), (*S*)-propane-1,2-diol (21 mg, 0.02 ml) and Zn(NO₃)₂·6H₂O (14.85 mg, 0.05 mmol) was dissolved in 4 mL of DMA/H₂O (2:2, v/v). The final mixture was placed in a Teflon vessel (12 mL) under autogenous pressure and heated at 85 °C for 3 days

and then cooled to room temperature over 24 h. Colorless rod-shaped crystals of Δ -1 were obtained, dried in air and collected in 39% yield (based on Zn(II) salt).

Synthesis of Λ -1. A mixture of TTPA (4.46 mg, 0.01 mmol), H₂TPDC (3.19 mg, 0.01 mmol), (*R*)-propane-1,2-diol (21 mg, 0.02 ml) and Zn(NO₃)₂·6H₂O (14.85 mg, 0.05 mmol) was dissolved in 4 mL of DMA/H₂O (2:2, v/v). The final mixture was placed in a Teflon vessel (12 mL) under autogenous pressure and heated at 85 °C for 3 days and then cooled to room temperature over 24 h. Colorless rod-shaped crystals of Λ -1 were obtained, dried in air and collected in 37% yield (based on Zn(II) salt).

Elemental analysis calcd. for C₉₆H₈₀N₂₂O₁₁Zn₂ (%): C, 62.37; H, 4.36; N, 16.67. Found: C, 62.33; H, 4.29; N, 16.88. IR (KBr, cm⁻¹): 3447w, 3113w, 1623s, 1605vs, 1558w, 1521vs, 1363s, 1311m, 1277s, 1210w, 1183s, 1145m, 1051w, 1016w, 999w, 974s, 954w, 837m, 799w, 774m, 708w, 673m, 654m, 545m (Fig. S8).

Fig. S8 IR spectra of Δ -1 and Λ -1

Number	Form	a	h	C.	V	R	wP	Flack
Number	TOTI	u	8	C	v	n_1	Why	parameter
1	Δ-1	9.3086(4)	21.1829(8)	21.4560(9)	4230.8(3)	0.0482	0.1052	0.036(16)
2	Δ	9.2648(11)	21.197(2)	21.197	4163.0(7)	0.0448	0.1006	0.030(15)
3	Δ	9.3151(13)	21.501(3)	21.501	4306.3(8)	0.0418	0.1099	0.003(5)
4	Δ	9.3132(4)	21.2184(9)	21.4352(9)	4235.8(3)	0.0413	0.0983	0.054(13)
5	Δ	9.3124(12)	21.510(3)	21.510	4308.6(8)	0.0441	0.1043	-0.002(7)
6	Δ	9.3252(11)	21.347(2)	21.347	4249.6(7)	0.0539	0.1367	0.075(17)
7	Δ	9.3236(9)	21.363(2)	21.363	4255.0(6)	0.0413	0.0943	0.022(13)
8	Δ	9.3415(17)	21.585(4)	21.585	4352.3(11)	0.0427	0.1016	0.010(7)
9	Δ	9.3383(9)	21.423(2)	21.423	4285.7(6)	0.0398	0.0920	0.013(5)
10	Δ	9.3199(9)	21.456(2)	21.559(2)	4311.1(7)	0.0435	0.1015	0.003(7)
11	Δ	9.3308(11)	21.378(2)	21.378	4264.4(7)	0.0457	0.1011	0.032(15)
12	Δ	9.3067(4)	21.1746(8)	21.4360(8)	4224.3(3)	0.0465	0.1005	0.024(15)
13	Δ	9.3445(11)	21.421(2)	21.421	4287.7(7)	0.0464	0.0996	0.035(15)
14	Δ	9.3121(12)	21.297(3)	21.297	4223.7(7)	0.0418	0.0959	0.034(14)
15	Δ	9.3176(4)	21.1856(8)	21.4604(9)	4236.3(3)	0.0426	0.0938	0.026(14)
16	۸-1	9.3272(10)	21.377(2)	21.377	4262.5(6)	0.0414	0.0949	0.013(13)
17	٨	9.3115(11)	21.498(3)	21.498	4303.5(7)	0.0424	0.1069	0.006(5)
18	۸	9.3245(11)	21.527(3)	21.527	4321.2(7)	0.0440	0.1069	0.013(6)
19	۸	9.316(2)	21.525(5)	21.525	4316.5(15)	0.0460	0.1118	0.019(7)
20	۸	9.3369(11)	21.394(2)	21.394	4273.4(7)	0.0393	0.0921	0.021(13)
21	۸	9.3266(17)	21.551(4)	21.551	4331.7(11)	0.0429	0.1012	0.008(7)
22	۸	9.3249(13)	21.529(3)	21.529	4322.0(8)	0.0434	0.1019	0.011(7)
23	۸	9.3199(14)	21.508(3)	21.508	4311.2(9)	0.0406	0.1013	0.007(6)
24	۸	9.312(2)	21.533(4)	21.533	4317.6(13)	0.0406	0.1031	0.004(6)
25	۸	9.3318(11)	21.552(3)	21.552	4334.6(7)	0.0414	0.1023	0.018(6)
26	۸	9.454(11)	21.73(3)	22.04(3)	4527(9)	0.0403	0.1047	0.009(5)
27	٨	9.3076(11)	21.509(3)	21.509	4306.1(7)	0.0389	0.1039	0.006(5)
28	٨	9.3134(4)	21.1860(9)	21.4414(9)	4230.7(3)	0.0525	0.1107	0.039(15)
39	٨	9.3153(4)	21.1799(9)	21.4540(9)	4232.8(3)	0.0467	0.1032	0.037(14)
30	٨	9.3072(4)	21.1778(8)	21.4460(9)	4227.1(3)	0.0416	0.0928	0.030(13)

Table S1 A summary of the crystal data and refinement results for 30 randomly selected crystals with space group $P2_12_12_1$ through the spontaneous resolution

Number	Form	а	b	С	V	<i>R</i> ₁	wR ₂	Flack
								parameter
1	Δ	9.3090(4)	21.1827(9)	21.4422(9)	4228.2(3)	0.0465	0.0994	0.030(15)
2	Δ	9.3332(10)	21.435(2)	21.435	4288.4(6)	0.0366	0.0877	0.014(5)
3	Δ	9.3071(3)	21.2018(8)	21.4607(8)	4234.8(3)	0.0418	0.0952	0.022(14)
4	Δ	9.3182(12)	21.355(2)	21.355	4249.5(7)	0.0417	0.0957	0.015(5)
5	Δ	9.3336(12)	21.366(2)	21.366	4260.8(7)	0.0498	0.1049	0.039(16)
6	Δ	9.3070(3)	21.1952(7)	21.4693(8)	4235.1(3)	0.0444	0.0987	0.024(15)
7	Δ	9.3361(12)	21.393(3)	21.393	4273.0(7)	0.0463	0.1011	0.021(15)
8	Δ	9.3030(3)	21.2026(7)	21.4416(8)	4229.3(3)	0.0430	0.0981	0.017(14)
9	Δ	9.3383(11)	21.414	21.414(2)	4282.4(7)	0.0395	0.0946	0.019(14)
10	Δ	9.3162(6)	21.1950(14)	21.4517(16)	4235.8(5)	0.0486	0.1179	0.052(16)

Table S2 A summary of the crystal data and refinement results for 10 randomly selected crystals with space group $P2_12_12_1$ using a small amount of (*S*)-propane-1,2-diol

Table S3 A summary of the crystal data and refinement results for 10 randomly selected crystals with space group $P2_12_12_1$ using a small amount of (*R*)-propane-1,2-diol

Number	Form	а	b	С	V	<i>R</i> ₁	wR ₂	Flack
								parameter
1	٨	9.3344(14)	21.371(3)	21.371	4263.2(8)	0.0432	0.0975	0.032(14)
2	۸	9.3214(12)	21.329(2)	21.329	4240.7(7)	0.0412	0.0927	0.026(13)
3	٨	9.3519(14)	21.400(3)	21.400	4282.6(9)	0.0516	0.1124	0.043(16)
4	٨	9.3202(12)	21.352(3)	21.352	4249.0(7)	0.0464	0.1030	0.028(15)
5	٨	9.3315(12)	21.389(3)	21.389	4269.1(8)	0.0422	0.0955	0.025(14)
6	٨	9.3115(12)	21.302(2)	21.302	4225.5(7)	0.030(14)	0.0449	0.0986
7	٨	9.3119(3)	21.1889(8)	21.4558(8)	4233.4(3)	0.0464	0.1038	0.042(15)
8	٨	9.3137(3)	21.1756(7)	21.4432(7)	4229.1(2)	0.0421	0.0948	0.008(14)
9	٨	9.3062(5)	21.1780(10)	21.4485(11)	4227.2(4)	0.0433	0.0969	0.020(14)
10	۸	9.3056(5)	21.2124(12)	21.4591(12)	4235.9(4)	0.0503	0.1147	0.045(16)

Table S4 Selected bond lengths (Å) and angles (°) for $\Delta\text{-}1$ and $\Lambda\text{-}1$

	Δ-1		
Zn(1)-O(1)	1.919(3)	Zn(1)-N(1)	2.001(4)
Zn(1)-O(3)#1	1.957(3)	Zn(1)-N(4)#2	2.034(4)
O(1)-Zn(1)-O(3)#1	103.89(16)	O(1)-Zn(1)-N(4)#2	98.80(15)

O(1)-Zn (1)-N(1)	120.26(15)	O(3)#1-Zn(1)-N(4)#2	109.00(15)
O(3)#1-Zn (1)-N(1)	116.34(15)	N(1)-Zn (1)-N(4)#2	106.86(15)
	٨-1		
Zn(1)-O(1)	1.924(3)	Zn(1)-N(1)	2.000(3)
Zn(1)-O(3)#1	1.963(3)	Zn(1)-N(4)#2	2.040(3)
O(1)-Zn(1)-O(3)#1	104.13(14)	O(1)-Zn (1)-N(4)#2	98.34(14)
O(1)-Zn(1)-N(1)	120.43(12)	O(3)#1-Zn(1)-N(4)#2	109.69(13)
O(3)#1-Zn(1)-N(1)	116.11(13)	N(1)-Zn(1)-N(4)#2	106.50(13)
<u> </u>	4/2 4/2 1/2		"1 2 1/2

Symmetry codes: #1: -x + 3, y + 1/2, -z + 1/2; #2: -x + 1/2, -y + 1, z + 1/2 for Δ -1; #1: -x + 2, y - 1/2, -z + 3/2; #2: -x - 1/2, -y + 2, z + 1/2 for Λ -1.

Table S5 Hydrogen bonding distances (Å) and angles (°) for Δ -1 and Λ -1

D-H…A	d(D-H)	d(H···A)	d(D…A)	∠(DHA)			
Δ-1							
C(1)-H(1)…O(4) #1	0.93	2.480	3.098	123.98			
C(1)-H(1)…O(5)	0.93	2.580	3.373	143.51			
C(2)-H(2)…O(3)	0.93	2.320	3.084	139.21			
C(3)-H(3)…O(4) #2	0.93	2.624	3.168	117.91			
С(3)-Н(3)…О(5) #3	0.93	2.563	3.417	152.87			
C(11)-H(11)…O(3) #4	0.93	2.439	3.287	151.58			
C(17)-H(17)…O(2) #5	0.93	2.594	3.477	158.63			
C(20)-H(20)…N(6) #6	0.93	2.657	3.501	151.25			
C(48)-H(48C)…N(9) #7	0.96	2.680	3.552	151.35			
	۸-1						
C(1)-H(1)…O(4) #1	0.93	2.473	3.092	124.17			
C(1)-H(1)…O(5) #2	0.93	2.592	3.379	142.76			
C(2)-H(2)…O(2)	0.93	2.331	3.094	139.05			
С(3)-Н(3)…О(4) #3	0.93	2.647	3.189	117.78			
C(3)-H(3)····O(5) #4	0.93	2.557	3.415	153.68			

C(11)-H(11)…O(3) #5	0.93	2.438	3.284	151.27
C(17)-H(17)…O(2) #6	0.93	2.607	3.490	158.57
C(20)-H(20)…N(6) #7	0.93	2.676	3.517	150.67
C(48)-H(48A)…N(9) #8	0.96	2.667	3.585	160.23

Symmetry codes: #1; -x + 3, y + 1/2, -z + 1/2; #2: x - 5/2, -y + 1/2, -z; #3: -x + 1/2, -y + 1, z - 1/2; #4: -x + 2, y + 1/2, -z + 1/2; #5: x - 1, y, z; #6: x + 1/2, -y + 3/2, -z; #7: -x, y - 1/2, -z + 1/2 for Δ -1; #1: -x + 2, y - 1/2, -z + 3/2; #2: -x + 1/2, -y + 1, z + 1/2; #3: x - 5/2, -y + 5/2, -z + 1; #4: x - 1, y + 1, z; #5: -x + 1, y - 1/2, -z + 3/2; #6: x - 1, y, z; #7: x + 1/2, -y + 3/2, -z + 1; #8: x + 3/2, -y + 1/2, -z + 1 for Λ -1.

References

- S1. Z. Z. Shi, Z. R. Pan, C. L. Zhang and H. G. Zheng, *Dalton Trans.*, 2015, 44, 16854.
- S2. A. M. Johnson, M. C. Younga and R. J. Hooley, *Dalton Trans.*, 2013, 42, 8394.
- S3. Bruker 2000, SMART (Version 5.0), SAINT-plus (Version 6), SHELXTL (Version 6.1), and SADABS (Version 2.03); Bruker AXS Inc.: Madison, WI.