Supporting information

Hierarchical porous NiCo₂O₄ nanosheet arrays directly grown on carbon cloth with superior lithium storage performance

Table S1. The synthetic conditions for all the compared samples.				
Samples	Molar concentration of Co ²⁺ :Ni ²⁺ in	Solvothermal		
	the reaction solution (mmol:mmol)	temperature (°C)		
NCO-PSA/CC	4:2	180		
NCO-PSA/CC-1	2:1	180		
NCO-PSA/CC-2	6:3	180		
NCO-PSA/CC-160	4:2	160		
NCO-PSA/CC-200	4:2	200		
Co ₃ O ₄ /CC	4:0	180		
NiO/CC	0:2	180		

Fig. S1 SEM images of (a, b) Co_3O_4/CC and (c, d) NiO/CC composites under different magnifications.

Electrodo motorial	Reversible capacity	Current density	Dof
	(mA h g ⁻¹)	(mA g ⁻¹)	Kei.
Multiporous MnCo ₂ O ₄	064	200	S 1
hollow spheres	964	200	51
Multiporous CoMn ₂ O ₄	010	200	S 1
hollow spheres	910	200	51
The rGO/NiCo ₂ O ₄	054	200	52
nanocomposite	954	200	52
ZnCo ₂ O ₄ nanosheets	1106.8	200	S 3
Carbon-coated	- 10	1000	
CuCo ₂ O ₄ polyhedra	740	1000	84
Porous NiCo2O4 nanosheet	1697 6	500	
arrays on carbon cloth	1087.0	500	I IIS WORK

Table S2. The comparison of electrochemical properties with other mixed transition

 metal oxide nanostructures.

Fig. S2 Electrochemical performance of carbon cloth: (a) The rate capabilities of carbon cloth at current density from 100 to 1000 mA g^{-1} . (b) Cyclic performance of carbon cloth at a constant current density of 500 mA g^{-1} for 1000 cycles.

Fig. S3 SEM images of the (a, b) NCO-PSA/CC-1 and (c, d) NCO-PSA/CC-2 composites synthesized from different dosage of Co(NO₃)₂•6H₂O and Ni(NO₃)₂•6H₂O.

Fig. S4 Rate capabilities of the NCO-PSA/CC-1 and NCO-PSA/CC-2 electrodes at different current density from 500 to 6000 mA g^{-1} .

Fig. S5 SEM images of (a, b) NCO-PSA/CC-160 and (c, d) NCO-PSA/CC-200 synthesized by the solvothermal temperatures 160 °C and 200 °C, respectively.

Fig. S6 Rate capabilities of the NCO-PSA/CC-160 and NCO-PSA/CC-200 electrodes at current density from 500 to 6000 mA g^{-1} .

References:

[S1] J. Li, S. Xiong, X. Lia, Y. Qian, *Nanoscale*, 2013, **5**, 2045-2054.
[S2] X. Leng, Y. Shao, S. Wei, Z. Jiang, J. Lian, G. Wang, Q. Jiang, *ChemPlusChem*, 2015, **80**, 1725-1731.
[S3] Y. Zhu, C. Cao, J. Zhang, X. Xu, *J. Mater. Chem. A*, 2015, **3**, 9556-9564.
[S4] J. Ma, H. Wang, X. Yang, Y. Chai, R. Yuan, *J. Mater. Chem. A*, 2015, **3**, 12038-12043.