Electronic supplementary information (ESI)

Synthesis of water-soluble palladium(II) complexes with Nheterocyclic carbene chelate ligands and their use in the aerobic oxidation of 1-phenylethanol

Juan M. Asensio, Pilar Gómez-Sal, Román Andrés and Ernesto de Jesús*

Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28871 Alcalá de Henares (Madrid), Spain

ernesto.dejesus@uah.es

Table of contents

1. ¹ H and ¹³ C{ ¹ H} NMR spectra for bis-carbene complexes 4–7	S2
2. ¹ H and ¹³ C{ ¹ H} NMR spectra for tetrakis-carbene complexes 8 and 9	S 8
3. Crystallographic data for compounds 4^s and 8	S10
4. TEM images	S 11

1. ¹H and ¹³C{¹H} NMR spectra for bis-carbene complexes 4–6

Fig. S1 ¹H and ¹³C{¹H} NMR spectra for 4^{s} in D₂O.

Fig. S2 ¹H and ¹³C{¹H} NMR spectra for 4^{C} in D₂O.

Fig. S3 ¹H and ¹³C{¹H} NMR spectra for 4^{N} in D₂O.

Fig. S4 ¹H and ¹³C{¹H} NMR spectra for $\mathbf{5}^{\mathbf{8}}$ in dmso- d_6 .

Fig. S5 ¹H, ¹³C{¹H} and ¹H, ¹³C-HMBC NMR spectra for 6^{s} in D₂O.

Fig. S6 ¹H and ¹³C{¹H} NMR spectra for 7 in D₂O. (a) ¹H NMR spectrum of a sample of 7 obtained from Pd(OAc)₂. (b) ¹H and ¹³C{¹H} NMR spectra of a sample of 7 obtained by dissolving dichlorido 4^s in an excess of KI. The excess of KI was used to slow down the transformation of 7 into 8 that is observed in D₂O, permitting the accumulation of the ¹³C NMR spectra without evolution of the sample.

Fig. S7 1 H and ${}^{13}C{}^{1}$ H} NMR spectra for 8 in D₂O.

Fig. S8 ¹H and ¹³C{¹H} NMR spectra for **9** in D_2O .

3. Crystallographic data for compounds $4^{\text{s}}\text{-PPh}_4$ and 8

A summary of crystal data, data collection, and refinement parameters for the structural analysis is given in Table S1.

	4^s-PPh ₄ •5H ₂ O	$8 \bullet \frac{1}{6} CsCl \bullet \frac{1}{3} HCl \bullet 4H_2O$
empirical formula	$C_{61}H_{68}Cl_2N_4O_{11}P_2PdS_2$	$C_{78}H_{133}Cl_{1.5}Cs_{6.5}N_{24}O_{47}Pd_3S_{12}$
formula weight	1336.55	3780.10
crystal size (mm)	$0.41 \times 0.34 \times 0.21$	$0.4 \times 0.06 \times 0.06$
color / habit	colorless / prism	colorless / prism
temperature (K)	200(2)	200(2)
wavelength (Å)	0.71073	0.71073
crystal system	triclinic	triclinic
space group	<i>P</i> -1	<i>P</i> -1
<i>a</i> (Å)	13.305(4)	14.0002(13)
<i>b</i> (Å)	14.001(7)	14.4399(11)
<i>c</i> (Å)	17.266(10)	16.3759(15)
α (deg)	84.02(3)	96.682(7)
$\beta(\text{deg})$	76.24(3)	100.591(7)
γ (deg)	80.48(3)	99.196(8)
volume (Å ³)	3074(3)	3175.9(5)
Ζ	2	1
calcd density (g/cm ³)	1.444	1.977
$\mu (\mathrm{mm}^{-1})$	0.571	2.577
<i>F</i> (000)	1384	1860
θ range (deg)	3.12 to 26.50	3.00 to 26.00
limiting indices (h, k, l)	-16/16, -17/17, -21/21	-16/17, -17/17, -20/20
no. of reflns collected	23595	21407
no. of reflns unique / R_{int}	12571 / 0.0442	12363 / 0.0644
no. of reflns observed $[I > 2\sigma(I)]$	7933	7048
completeness to θ	98.6%	99.1%
absorption correction	multi-scan	multi-scan
max. and min. transmission	0.823 and 0.731	0.802 and 0.614
refinement method	full-matrix least-squares on F^2	full-matrix least-squares on F^2
no. of data / restraints / parameters	12571 / 0 / 773	12363 / 0 / 805
goodness of fit on F^2	0.971	0.962
$R1 / wR2 [I > 2\sigma(I)]^a$	0.0467 / 0.1052	0.0607 / 0.1461
R1 / wR2 (all data)	0.0968 / 0.1213	0.1232 / 0.1734
largest diff. peak and hole $(e/Å^3)$	0.896 and -0.627	2.039 and -2.119

Table S1 Crystallographic data for compounds 4^{s} -PPh₄ and 8.

^a R1 = $\Sigma(||F_o|-|F_c||)/\Sigma|F_o|$; wR2 = {[$\Sigma w(F_o^2-F_c^2)$]/[$\Sigma w(F_o^2)^2$]}^{1/2}.

4. TEM images

Fig. S9 Transmission electron microscopy images of the aqueous phase in the oxidation of 1phenylethanol catalyzed by 4^{s} , after 4 hours of reaction. The sample for TEM was prepared by evaporation of 1 drop of the aqueous solution, on a holey copper grid covered by amorphous carbon.