Supporting Information

Pb²⁺ Complexes of Small-Cavity Azamacrocyclic Ligands. Thermodynamic and Kinetic Studies.

Andrea Liberato, Almudena Aguinaco, Laura Acosta-Rueda, M. Paz Clares, Estefanía Delgado-Pinar, Javier Pitarch-Jarque, Salvador Blasco, Manuel G. Basallote, Enrique García–España and Begoña Verdejo Fig. S1. Distribution diagram of receptor L1.

- Fig. S2. Plot of the fluorescence intensity vs. [Pb²⁺] for L1.
- Fig. S3. Fluorescence spectra of [PbL3]²⁺ and [H₃L3]³⁺
- Fig. S4. pH effect on the electronic spectra of aqueous solutions containing L2
- Fig. S5. pH effect on the electronic spectra of aqueous solutions containing L2 and Pb²⁺

in 1:1 molar ratio

- Fig. S6. Fluorescence spectra of [PbL2]²⁺ and [H₃L2]³⁺
- Fig. S7. pH effect on the electronic spectra of aqueous solutions containing L1.
- Fig. S8. pH effect on the electronic spectra of aqueous solutions containing L1 and Pb²⁺

in 1:1 molar ratio.

Fig. S9. Fluorescence spectra of $[PbL1]^{2+}$ and $[H_3L1]^{3+}$

 Table S1. Crystallographic data for 1 and 2.

Fig. S1. Distribution diagram of receptor L1.

Fig. S2. Plot of the fluorescence intensity vs. [Pb²⁺] for L1.

The detection limit depends on the instrumentation (i.e. the Signal-to-Noise Ratio gives you a quantitative indication of the sensitivity, in this case 352) and on the sensitivity of the ligand defined as the d(luminescence)/d[cation]. Using these two parameters, the limit of detection can then be calculated as 3^* SNR/sensitivity. The mean value obtained from three independent measurements is 3.0 ± 0.2 ppb for **L1**.

Fig. S3. Fluorescence spectra of $[PbL3]^{2+}$ (dotted line) and $[H_3L3]^{3+}$ (solid line) (excitation at 275 nm of a solution of the $[PbL3]^{2+}$ complex causes fluorescence emission with a maximum at 320 nm).

Fig. S4. pH effect on the electronic spectra of aqueous solutions containing L2 ($[L2]_0$ = 1×10⁻⁴ M). The pH values were selected to achieve the maximum concentrations of $[H_3L2]^{3+}$ (pH= 4) (solid line), $[H_2L2]^{2+}$ (pH= 8.5) (dotted line), $[HL2]^+$ (pH= 9.5) (dashed line) and L2 (pH= 11) (dash-dotted line).

Fig. S5. pH effect on the electronic spectra of aqueous solutions containing L2 and Pb²⁺ in 1:1 molar ratio ($[L2]_0=[Pb^{2+}]_0=1\times10^{-4}$ M). The pH values were selected to achieve the maximum concentrations of $[PbL2]^{2+}$ (pH=9) (dashed line), $[PbHL2]^{3+}$ (pH=5) (dotted line), and protonated ligand (pH=3) (solid line).

Fig. S6. Fluorescence spectra of $[PbL2]^{2+}$ (dotted line) and $[H_3L2]^{3+}$ (solid line) (excitation at 275 nm of a solution of the $[PbL2]^{2+}$ complex causes fluorescence emission with a maximum at 320 nm).

Fig. S7. pH effect on the electronic spectra of aqueous solutions containing **L1** $([L1]_0=1\times10^{-4} \text{ M})$. The pH values were selected to achieve the maximum concentrations of $[H_3L1]^{3+}$ (pH=3) (solid line), $[H_2L1]^{2+}$ (pH=7.5) (dotted line), $[HL1]^+$ (pH=9) (dashed line) and L1 (pH=11) (dash-dotted line). The mono and deprotonated species always exist as complex mixtures of species.

Fig. S8. pH effect on the electronic spectra of aqueous solutions containing **L1** and Pb²⁺ in 1:1 molar ratio ([**L1**]₀=[Pb²⁺]₀=1×10⁻⁴ M). The pH values were selected to achieve the maximum concentrations of [Pb**L1**]²⁺ (pH=8.3) (dashed line), [PbH**L1**]³⁺ (pH=5) (dotted line), and protonated ligand (pH=2) (solid line).

Fig. S9. Fluorescence spectra of $[PbL1]^{2+}$ (dotted line) and $[H_3L1]^{3+}$ (solid line) (excitation at 275 nm of a solution of the $[PbL1]^{2+}$ complex causes fluorescence emission with a maximum at 320 nm).

Compound	1	2
Empirical formula	$C_{54}H_{68}Cl_3N_{11}O_7Pb_2$	$C_{11}H_{18}Cl_2N_4O_8Pb \\$
Formula weight	1503.92	612.38
Temperature	120(1)	293(2)
Crystal system	orthorhombic	monoclinic
Space group	Pbcn	$P2_1/c$
Unit cell dimensions		
a(Å)	13.1619(4)	8.8925(3)
b(Å)	13.0751(4)	15.1543(5)
c(Å)	33.1703(10)	13.5209(5)
α(°)	90	90
β(°)	90	101.1503(13)
γ(°)	90	90
Volume Å ³	5708.4(3)	1787.68(11)
Ζ	4	4
Density calc (g/cm ³)	1.75	2.275
Crystal size (mm)	0.17× 0.15 ×0.1	0.1×0.05×0.05
Wavelength	0.71073	0.71073
F(000)	2960	1168
μ (mm ⁻¹)	6.092	9.785
Absorption correction	Multiscan	Multiscan
Θ range	6.59 to 27.38	0.998 to 27.485
reflns collected	13519	7719
indep reflns	5006	4063
R(int)	0.0405	0.0588
data/restr/param	5006/104/445	4063/0/235
Final R indices[I >2 σ (I)]	$R_1 = 0.0651,$	R ₁ =0.0455
	$wR_2 = 0.0765;$	$wR_2 = 0.1222$
Final R indices [all data]	$R_1 = 0.1313,$	R ₁ =0.1077
	$wR_2 = 0.1350;$	$wR_2 = 0.1612$
$GOF(F^2)$	1.368	0.881

Table S1. Crystallographic data for 1 and 2