Supporting information:

Design of a highly active base catalyst through utilizing organic-solvent-treated layered silicate Hiroshima University Silicates

Nao Tsunoji,^{*,a} Yuya yagenji,^a Hidechika Nsihida,^a Mahuya Bandypadhyay^a Masahiro

Sadakane,^a and Tsuneji Sano^a

^aDepartment of Applied Chemistry, Graduate School of Engineering, Hiroshima University,

Higashi-Hiroshima 739-8527, Japan

Corresponding Author

*Corresponding authors: Nao Tsunoji, tel.: +81-82-424-7606, e-mail: tnao7373@hiroshimau.ac.jp;

Figure S1. ¹³C CP MAS spectra of HUS-2, C₁₆TMAHUS-2, C₁₆TMAHUS-2(hexane), HUS-7,

C₁₆TMAHUS-7, and C₁₆TMAHUS-7(hexane).

Figure S2. TG curves of HUS-2, C₁₆TMAHUS-2, C₁₆TMAHUS-2(hexane), HUS-7, C₁₆TMAHUS-7, and

C₁₆TMAHUS-7(hexane).

Figure S3. N₂ adsorption isotherms and BJH pore size distributions of calcined C_{16} TMAHUS-7(hexane) C_{16} TMAHUS-7(n-tridecane), C_{16} TMAHUS-7(cyclohexane), C_{16} TMAHUS-7(cyclopentane), and

C₁₆TMAHUS-7(cyclooctane)

Figure S4. (A) Heterogeneity test of NH_2 - $C_{16}TMAHUS$ -7(cyclohexane) and (B) catalyst performance with increased amounts of reaction components (triacetin (30 g), methanol (65.5 g), NH_2 - $C_{16}TMA$ HUS-7(cyclohexane) (10 mg)).

Figure S5. (A) XRD patterns and (B) TG curves of NH₂-C₁₆TMAHUS-7(cyclohexane) before and after

catalytic reaction.