## A novel luminescent Pb(II) - organic framework exhibiting rapid and selective detection of trace amount of NACs and Fe<sup>3+</sup> with excellent recyclability

Xuan Luo<sup>a</sup>, Xiao Zhang<sup>\*a,c</sup>, Yuanling Duan<sup>a</sup>, Xiaolin Wang<sup>b</sup>, Jiaming Zhao<sup>b</sup>

## **Supporting information**

## **Figure cation**

Fig. S1 A view of the asymmetric unit and some symmetry-related atoms in 1

Fig. S2 The IR spectra of  $H_2L$  ligand and 1

Fig. S3 Powder XRD of simulated from the single-crystal data of 1 and synthesized compound 1

Fig. S4 Thermogravimetric analyses curve of 1.

Fig. S5 Power patterns of 1 in different temperature.

Fig. S6 Solid-state emission spectra of compound 1 and free  $H_2L$  ligand when excited at 260 nm, respectively.

Fig.S7 Emission spectra of compound 1 and free  $H_2L$  ligand dispersed in water when excited at 260 nm, respectively.

Fig. S8 Emission spectra of 1 dispersed in different solvents when excited at 260 nm.

Fig. S9 Power patterns of **1** immersed in different solvents at room temperature.

Fig. S10 Solid UV spectra of compound 1.

Fig. S11 - S18 (a) The luminescence intensity of 1 upon incremental addition of NACs solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of NACs solution (5 mM) in water.

Fig. S19 - S27 The fitting curve of the luminescence intensity of **1** at different NACs concentration (linear range 0-0.025 mM).

Fig. S28 HOMO and LUMO of  $H_2L$  ligand and NACs.

Fig. S29 Spectral overlap between normalized absorbance spectra of NACS and emission spectra of **1**.

Fig. S30 The fitting curve of the luminescence intensity of **1** at different  $Fe^{3+}$  concentration (linear range 0-0.13 mM).

Fig. S31 Power XRD patterns of 1 after three recycles.

Fig. S32 Powder XRD patterns of simulated from the single-crystal data of 1 and synthesized compound and  $Fe^{3+}-1$ .

Fig. S33 Spectral overlap between normalized absorbance spectra of metal icons and emission spectra of **1**.

Fig. S34 The XPS of  $Fe^{3+}$ -1 shows the typical peak of  $Fe^{3+}$  at 710 eV.

Fig. S35- S37.The luminescence intensity of 1 upon addition 4  $\mu$ L and 8  $\mu$ L of Fe<sup>3+</sup> ions (25 mM) in drinking, tap, river water.

Table S1 Selected bond lengths (Å) and angles (°) for 1

Table S2 Summary of quenching constants (K<sub>SV)</sub> for 1 sensing of NACs at room temperature.

Table S3 Summary of limit detection (M) for 1 sensing of NACs at room temperature.

Table S4 HOMO and LUMO energies for calculated NACs at B3LYP/6-31G\* level of theory



Fig. S1 A view of the asymmetric unit and some symmetry-related atoms in **1**. Symmetry codes: (i) x, y, 1.5-z. (ii) 2-x, y, 1.5-z. (iii) x-0.5, y-0.5, z. (iv) 1-x, 1-y, z-0.5. (v) 1-x, 1-y, 2-z. (vi) 0.5+x, 0.5+y, z. (vii) 1.5-x, 0.5+y, 1.5-z.



Fig. S2 The IR spectra of H<sub>2</sub>L ligand and 1



Fig. S3 Powder XRD of simulated from the single-crystal data of 1 (black) and synthesized compound 1.



Fig.S4 Thermogravimetric analyses curve of **1**, the weight loss of 80.73 % is close to the calculated value (81.30 %).



Fig. S6 Solid-state emission spectra of compound **1** and free H<sub>2</sub>L ligand when excited at 260 nm, respectively.



Fig. S7 Emission spectra of compound 1 and free  $H_2L$  ligand dispersed in water when excited at 260 nm, respectively.



Fig. S8 Solid UV spectra of compound 1.



Fig. S9 Emission spectra of 1 dispersed in different solvents when excited at 260 nm.



Fig. S10 Power XRD patterns of 1 immersed in different solvents at room temperature.



Fig. S11 (a) The luminescence intensity of 1 upon incremental addition of NB solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon the addition of NB solution



Fig. S12 (a) The luminescence intensity of 1 upon incremental addition of p-NT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of p-NT solution (5 mM) in water.



Fig.S13 (a) The luminescence intensity of 1 upon incremental addition of *o*-NT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of *o*-NT solution (5 mM) in water.



Fig. S14 (a) The luminescence intensity of 1 upon incremental addition of m-NT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of m-NT solution



Fig. S15 (a) The luminescence intensity of 1 upon incremental addition of 4-Np solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of 4-Np solution



Fig. S16 (a) The luminescence intensity of 1 upon incremental addition of 2-Np solution (5 mM) in water (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of 2-Np solution (5 mM) in water.



Fig. S17 (a) The luminescence intensity of 1 upon incremental addition of *m*-DNB solution (5 mM in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of *m*-DNB solution (5 mM) in water.



Fig.S18 (a) The luminescence intensity of 1 upon incremental addition of 2, 4-DNT solution (5 mM) in water. (b) Stern-Volmer plot for the luminescence intensity of 1 upon addition of 2, 4-DNT solution (5 mM) in water.



Linear Equation: Y = -16457X + 827.04 R = 0.9960 Slope =  $1.65 \times 10^7 M^{-1}$  $\delta = 8.72 (N=10)$ 

Limit detection = $3\delta$ /Slope=1.58×10<sup>-6</sup> M

Fig. S19 The fitting curve of the luminescence intensity of 1 at different PA concentration (linear

range 0-0.025 mM).



 $\delta = 8.72 \text{ (N} = 10)$ 



Fig. S20 The fitting curve of the luminescence intensity of 1 at different NB concentration (linear

range 0-0.030 mM).



Fig. S21 The fitting curve of the luminescence intensity of 1 at different m-DNB concentration















Fig. S27 The fitting curve of the luminescence intensity of **1** at different 4-Np concentration (linear range 0-0.030 mM).

Fig. S25 The fitting curve of the luminescence intensity of 1 at different 2, 4 DNT concentration (linear range 0-0.030 mM).



Fig. S29 Spectral overlap between normalized absorbance spectra of NACS and emission spectra of 1.



Fig. S30 The fitting curve of the luminescence intensity of 1 at different  $Fe^{3+}$  concentration (linear range 0-0.13 mM).



Fig. S31 Power XRD patterns of 1 after three recycles



Fig. S32 Powder XRD patterns of simulated from the single-crystal data of 1 and synthesized compound and  $Fe^{3+}-1$ 



Fig. S33 Spectral overlap between absorbance spectra of metal icons and emission spectra of 1.



Fig. S34 The XPS of  $Fe^{3+}$ -1 shows the typical peak of  $Fe^{3+}$  at 710 eV



Fig. S35 The luminescence intensity of 1 upon addition 4  $\mu$ l and 8  $\mu$ l of Fe<sup>3+</sup> ions (25 mM) in drinking water.



Fig. S36 The luminescence intensity of 1 upon addition 4  $\mu l$  and 8  $\mu l$  of Fe^{3+} ions (25 mM) in tap



Fig. S37 The luminescence intensity of 1 upon addition 4  $\mu l$  and 8  $\mu l$  of Fe^{3+} ions (25 mM) in river water.

| Table cation                                                                   |            |                         |           |  |  |
|--------------------------------------------------------------------------------|------------|-------------------------|-----------|--|--|
| Table S1 Selected bond lengths (Å) and angles (°) for 1                        |            |                         |           |  |  |
| Pb1-O2                                                                         | 2.383(3)   | Pb2-O1                  | 2.607(4)  |  |  |
| Pb2-O2                                                                         | 2.216(3)   | Pb2-N1                  | 2.695(11) |  |  |
| O2 <sup>3</sup> -Pb1-O2                                                        | 113.43(10) | O1 <sup>4</sup> -Pb2-N1 | 149.6(3)  |  |  |
| O2 <sup>1</sup> -Pb1-O2                                                        | 74.91(12)  | O2-Pb2-O1 <sup>5</sup>  | 79.3(2)   |  |  |
| O2 <sup>1</sup> -Pb1-O2 <sup>3</sup>                                           | 113.42(10) | O2-Pb2-O2 <sup>1</sup>  | 81.69(11) |  |  |
| O2 <sup>2</sup> -Pb1-O2                                                        | 70.0(2)    | O2-Pb2-N1               | 77.78(17) |  |  |
| Symmetry codes 1+X,+Y,3/2-Z; 21-X,1-Y,2-Z; 31-X,1-Y,-1/2+Z; 4-1/2+X,-1/2+Y,+Z; |            |                         |           |  |  |

TableS2 Summary of quenching constants (K $_{\rm SV)}$  for 1 sensing of NACs at room temperature

| Analytes      | K <sub>SV</sub> (M <sup>-1</sup> ) |
|---------------|------------------------------------|
| РА            | 5.98×10 <sup>4</sup>               |
| 2,4-DNT       | 5.92×10 <sup>4</sup>               |
| <i>m</i> -DNB | 5.29×10 <sup>4</sup>               |
| NB            | 2.85×10 <sup>4</sup>               |
| <i>p</i> -NT  | 4.51×10 <sup>4</sup>               |
| o-NT          | $1.68 \times 10^{4}$               |
| <i>m</i> -NT  | 1.99×10 <sup>4</sup>               |
| 2-Np          | 2.10×10 <sup>4</sup>               |
| 4-Np          | 3.31×10 <sup>4</sup>               |

 TableS3 Summary of Limit detection (M) for 1 sensing of NACs at room temperature

| Nitro explosives | Slope(M <sup>-1</sup> ) | Limit detection(M)    |
|------------------|-------------------------|-----------------------|
| РА               | 1.65×10 <sup>7</sup>    | 1.58×10 <sup>-6</sup> |
| NB               | 1.17×10 <sup>7</sup>    | 2.24×10-6             |
| <i>m</i> -DNB    | 1.36×10 <sup>7</sup>    | 1.92×10 <sup>-6</sup> |
| o-NT             | 7.41×10 <sup>6</sup>    | 3.53×10 <sup>-6</sup> |
| <i>m</i> -NT     | $1.05 \times 10^{7}$    | 2.49×10 <sup>-6</sup> |

| <i>p</i> -NT | $1.61 \times 10^{7}$  | 1.62×10 <sup>-6</sup> |
|--------------|-----------------------|-----------------------|
| 2,4-DNT      | 1.60×10 <sup>7</sup>  | 1.63×10 <sup>-6</sup> |
| 2-Np         | 1.06×107              | 2.46×10-6             |
| 4-Np         | 1.21× 10 <sup>7</sup> | 2.16×10-6             |

## **Molecular Orbital Calculations**

The electronic properties of L ligand and NACs were studied utilizing the density functional theory (DFT) compountation. Gaussian 09 suite of programs and a hybrid functional, B3LYP were employed. [1-4]

TableS4 HOMO and LUMO energies for calculated NACs and H<sub>2</sub>L at B3LYP/6-31G\* level of

| theory[1]        |           |           |          |  |  |
|------------------|-----------|-----------|----------|--|--|
| Analytes         | Homo(ev)  | LUmo(ev)  | Bond gap |  |  |
| РА               | -8.595166 | -4.320934 | 4.274232 |  |  |
| 2,4-DNT          | -8.41361  | -3.409107 | 5.004502 |  |  |
| <i>p</i> -NT     | -7.655022 | -2.792225 | 4.862798 |  |  |
| NB               | -7.887787 | -2.912631 | 4.975156 |  |  |
| <i>m</i> -DNB    | -8.730522 | -3.596104 | 5.134419 |  |  |
| o-NT             | -7.554773 | -2.746777 | 4.807996 |  |  |
| <i>m</i> -NT     | -7.55031  | -2.838932 | 4.711378 |  |  |
| 2-Np             | -7.160373 | -3.172671 | 3.987702 |  |  |
| 4-Np             | -7.290064 | -2.73967  | 4.550394 |  |  |
| H <sub>2</sub> L | -6.717239 | -1.682964 | 5.034275 |  |  |

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz,

- J. Cioslowski and D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2010.
- [2]A. D. Becke, *Physical Review A*, **1988**, *38*, 3098-3100.
- [3]C. Lee, W. Yang and R. G. Parr, *Physical Review B*, **1988**, *37*, 785-789
- [4]A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652