Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

Cu(III)Triarylcorroles with Asymmetric Push-Pull meso-Substitutions: Tunable

Molecular Electrochemically Catalyzed Hydrogen Evolution

Xu Liang,^{a,*} Yingjie Niu,^a Qianchong Zhang,^c John Mack,^{b,*}Xiaoyi Yi,^d Zweli Hlatshwayo,^b Tebello

Nyokong,^b Minzhi Li,^a and Weihua Zhu^{a,*}

^a School of Chemistry and Chemical Engineering, JiangSu University, Zhenjiang 213200, P. R. China.

^b Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.

^c State Key Laboratory of Physical Chemistry of Solid Surface and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

^d School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.

Figure S1 UV-visible-NIR absorption spectra of Cu(III)corroles **3a-d** at room temperature in CH₂Cl₂.

Figure S2 DPV measurements of **3a-d** in *o*-DCB (left) and PhCN (right) containing 0.1 M $[NBu_4]^+[CIO_4]^-$ (TBAP) as a supporting electrolyte.

Figure S3 Tafel plot of 3a-d in PhCN containing 0.1 M [NBu₄]⁺[ClO₄]⁻ (TBAP) as a supporting electrolyte.

Figure S4 *In situ* spectroelectrochemical measurements of **3a-d** in o-DCB containing 0.1 M $[NBu_4]^+[CIO_4]^-$ (TBAP) as a supporting electrolyte.

Figure S5 Stability test of 3a-d in PhCN containing 10.0 eq TFA.

Figure S6 Reductive electrochemical measurements at 50–500 mV/s scanning speed of Cu(III)corroles **3a-d** in the presence of 1.0 eq of TFA in PhCN containing 0.1 M $[NBu_4]^+[CIO_4]^-$ (TBAP) as a supporting electrolyte.

1. X-ray Crystallography

Table S1. Cry	stal data	of 3	3d
---------------	-----------	------	----

Sample-Temperature (K)	Data
Space group	P-1
<i>a</i> (Å)	8.525(2),
<i>b</i> (Å)	12.695(17),
<i>c</i> (Å)	18.656(15)
<i>α, β,</i> γ (°)	71.59, 82.11, 80.69
<i>V</i> (Å ³)	1882.6(9)
Ζ	2
F(000)	840.0
μ (mm ⁻¹)	0.637
Observed reflections (<i>I</i> >2 <i>σ</i> (<i>I</i>))	20148
Independent reflections	6602
R ₁	0.0689
wR ₂	0.1634

2. TD-DFT Calculations

Table S2. The calculated UV-visible absorption spectra of the B3LYP optimized geometry of **3a-d** and the 3Ph and 1Ph model complexesobtained by using the CAM-B3LYP functional of the Gaussian 09 software package with 6-31G(d) basis sets.

							3Ph
Band ^a	# ^b		Cal	Cc	E	хр ^d	Wave Function ^e =
	1						Ground State
0	4	20.2	495	(0.10)			74% s → -a; 19% a → -s;
ų	5	21.2	471	(0.03)			62% a → -a; 33% s → -s;
D	10	27.1	369	(0.52)			59% s → -s; 30% a → -a;
D	11	27.8	360	(0.55)			66% a → -s; 17% a → -s;
							1Ph
Band ^a	# ^b		Cal	Cc	E	хр ^d	Wave Function ^e =
	1						Ground State
Q	4	20.0	500	(0.11)			72% s → -a; 17% a → -s;
	5	20.9	478	(0.03)			62% a → -a; 28% s → -s;
B	10	27.0	371	(0.48)			48% s → -s; 27% a → -a ; 14% s → LUMO+2;
D	11	27.5	364	(0.60)			53% a → -s; 18% a → -s; 15% a → LUMO+2;
							3a
Band ^a	# ^b		Cal	Cc	E	хр ^d	Wave Function ^e =
	1						Ground State
0	4	20.4	491	(0.09)	16.3	612	70% s → -a; 18% a → -s;
~	5	20.9	478	(0.02)	18.5	541	61% a → -a; 27% s → -s;
в	10	26.9	372	(0.52)	23.1	432	48% s → -s; 29% a → -a ; 12% s → LUMO+2;
5	11	27.3	366	(0.62)	24.5	408	52% a → -s; 19% a → -s ; 15% a → LUMO+2;
							3b
Band ^a	# ^b		Cal	Cc	E	хр ^d	Wave Function ^e =
	1						Ground State
0	4	20.0	501	(0.10)	16.4	610	71% s → -a; 20% a → -s;
4	5	21.0	477	(0.02)	18.5	542	60% a → -a; 32% s → -s;
в	10	26.6	375	(0.51)	23.0	434	59% s → -s; 30% a → -a;
	11	27.2	368	(0.63)	24.4	410	66% a → -s; 20% a → -s;
							3c
Band ^a	# ^b		Cal	C ^C	E	хр ^d	Wave Function ^e =

	1						Ground State	
0	4	19.9	502	(0.12)	16.0	626	73% s → -a; 17% a → -s;	
ų	5	20.9	478	(0.02)	18.4	544	62% a → -a; 29% s → -s;	
в	10	26.9	372	(0.52)	23.5	426	48% s → -s; 28% a → -a ; 14% s → LUMO+2;	
D	11	27.5	364	(0.59)	24.9	402	53% a → -s; 17% a → -s; 15% a → LUMO+2;	
	3d							
Band ^a	# ^b		Cal	C ^C	E	хр ^d	Wave Function ^e =	
Band ^a	# ^b 1		Cal	c ^c	E:	xp ^d	Wave Function ^e = Ground State	
Band ^a	# ^b 1 4	 19.8	Cal 505	c ^c (0.13)	E 15.5	xp^d 644	Wave Function ^e = Ground State $73\% s \rightarrow -a; 16\% a \rightarrow -s;$	
Band ^a Q	# ^b 1 4 5	 19.8 20.9	Cal 505 479	c ^c (0.13) (0.02)	E 15.5 18.2	xp^d 644 548	Wave Functione =Ground State $73\% s \rightarrow -a; 16\% a \rightarrow -s;$ $60\% a \rightarrow -a; 31\% s \rightarrow -s;$	
Band ^a Q	# ^b 1 4 5 10	 19.8 20.9 26.6	Cal 505 479 376	c ^c (0.13) (0.02) (0.28)	E 15.5 18.2 23.0	xp ^d 644 548 435	Wave Function ^e =Ground State $73\% s \rightarrow -a; 16\% a \rightarrow -s;$ $60\% a \rightarrow -a; 31\% s \rightarrow -s;$ $25\% s \rightarrow -s; 17\% s \rightarrow LUMO; 16\% a \rightarrow -a; 10\% s \rightarrow LUMO+2;$	

a – Band assignment described in the text. b – The number of the state assigned in terms of ascending energy within the TD-DFT calculation. c – Calculated band energies (10^3 .cm⁻¹), wavelengths (nm) and oscillator strengths in parentheses (f). d – Observed energies (10^3 .cm⁻¹) and wavelengths (nm) in **Figure 2**. e – The wave functions based on the eigenvectors predicted by TD-DFT. One-electron transitions associated with the four frontier π -MOs of Gouterman's 4-orbital model^[S1] are highlighted in bold. Michl's **a**, **s**, **-a** and **-s** nomenclature^[S2] for the four frontier π -MOs is used to facilitate comparison of the transition of porphyrinoids with differing symmetries.

References

- [S1] Gouterman, M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In *The Porphyrins*, vol. III, Dolphin D. (Ed.) Academic Press: New York, 1978, 1-165.
- [S2] (a) Michl, J. J. Am. Chem. Soc. 1978, 100, 6801-6811. (b) Michl, J. J. Am. Chem.
 Soc. 1978, 100, 6812-6818. (c) Michl, J. Pure Appl. Chem. 1980, 52, 1549-1563. (d)
 Michl, J. Tetrahedron 1984, 40, 3845-3934.