Electronic Supplementary Information

pH-Dependent structural diversity of a 2-pyridinemethanol Cu complex and

its relatively strong magnetic exchange coupling via hydrogen bonding

Tomohiko Hamaguchi*, Tomoko Nagata, Shinya Hayami, Satoshi Kawata, Isao Ando

Figure S1 Color change of complex **1** on cooling (a : 293 K; b : 273 K; c : 253 K; d : 233 K; e : 213 K; f : 193 K; g : 173 K; h : 153 K)

Figure S2 Photographs of complex **2** on cooling (a : 293 K; b : 273 K; c : 253 K; d : 233 K; e : 213 K; f : 193 K; g : 173 K; h : 153 K)

Table S1 Crystallographic data for complex 1 at various temperature

Temp. / K	100(2)	150(2)	200(2)	250(2)	300(2)
Formula	C12H13CuF6N2O2P	C12H13CuF6N2O2P	C12H13CuF6N2O2P	C12H13CuF6N2O2P	C12H13CuF6N2O2P
Fw	425.75	425.75	425.75	425.75	425.75
Cryst. Syst.	orthorhombic	orthorhombic	orthorhombic	orthorhombic	orthorhombic
Space Group	Pbcn	Pbcn	Pbcn	Pbcn	Pbcn
<i>a</i> / Å	8.6711(2)	8.7142(2)	8.7671(2)	8.8221(2)	8.8886(4)
<i>b</i> / Å	19.3370(4)	19.3795(4)	19.4257(4)	19.4655(4)	19.5247(8)
<i>c</i> / Å	8.7396(2)	8.7366(2)	8.7330(2)	8.7295(2)	8.7308(4)
$V/\text{\AA}^3$	1465.40(6)	1475.41(6)	1487.29(6)	1499.09(6)	1515.21(12)
Ζ	4	4	4	4	4
D_{calc} / g cm ⁻³	1.930	1.917	1.901	1.886	1.866
F(000)	852	852	852	852	852
μ / mm ⁻¹	1.679	1.667	1.654	1.641	1.623
Cryst. size / mm ³	$0.44 \times 0.21 \times 0.19$				
heta range / °	3.142-27.439	3.140-27.444	3.137-27.461	3.135-27.457	3.130-27.455
Reflections collected	13321	13397	13444	13587	13770
Independent reflections	1683	1689	1699	1715	1735
R _{int}	0.0221	0.0224	0.0231	0.0238	0.0245
$R_1^*(I \ge 2\sigma(I))$	0.0240	0.0265	0.0279	0.0282	0.0312
$wR_2^*(I \ge 2\sigma(I))$	0.0672	0.0721	0.0747	0.0759	0.0832
GooF	1.092	1.092	1.112	1.122	1.140

* $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|, wR_2 = ((\Sigma (w(F_o^2 - F_c^2)^2)) / \Sigma (wF_o^4)))$

Table S2 Detail	of π π or	d Cu = #	interaction	at various	tomnoratura
Table 52 Detail	01π n al	u Cu- n	interaction	at various	icinperature

Temperature / K	100(2)	150(2)	200(2)	250(2)	300(2)
distance between $Cg(I)$ and $Cg(J) / Å$	4.0480(8)	4.0628(8)	4.0812(9)	4.0990(9)	4.1189(10)
$\alpha/^{\circ}$	9.40(6)	9.45(7)	9.55(7)	9.62(8)	9.69(8)
<i>Cg</i> (I)-prep / Å	3.5441(5)	-3.5542(6)	3.5666(6)	3.5767(6)	3.5904(7)
<i>Cg</i> (J)-prep / Å	3.5441(5)	-3.5542(6)	3.5666(6)	3.5768(6)	3.5904(7)
slippage / Å	1.956	1.968	1.984	2.002	2.019
distance between $Cg(I)$ and Cu1% / Å	3.717	3.724	3.732	3.740	3.750
β /°	37.60	37.46	37.32	37.12	36.95
MeJ-prep / Å	2.945	-2.956	2.968	2.982	2.997

Ring (I) : 2-pyridyl ring of N1-C2-C3-C4-C5-C6. Ring (J) : 2-pyridyl ring of N1%-C2%-C3%-C4%-C5%-C6%. Symbol % means the equivalent atoms generated by the symmetry operator (1 - x, y, 3/2 - z) for 100, 150, 250 K or (1 - x, y, 1/2 - z) for 200, 300 K. α : dihedral angle between Ring (I) and Ring (J) β : angle Cg(I)-Cu1% vector and normal to plane I. CgI-prep : perpendicular distance of Cg(I) from Ring (J) CgJ-perp : perpendicular distance of Cg(I) from Ring (I). MeJ-perp : perpendicular distance of Cg(I) from Ring(I). MeJ-perp : perpendicular distance of Cg(I) from Cu1%. slippage : distance between Cg(I) and perpendicular projection of Cg(J) on Ring(I). Cg(I) and Cg(J) are the centroids of atoms N1-C2-C3-C4-C5-C6 and N1%-C2%-C3%-C4%-C5%-C6%, respectively.