Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Synthesis and Characterization of a Family of

Thioether-Dithiolate-Bridged Heteronuclear Iron Complexes

Yahui Zhang,^a Dawei Yang,^{*,a} Ying Li,^a Baomin Wang,^a Xiangyu Zhao^a and Jingping Qu^{*,a,b}

^aState Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian,

116024, P.R. China.

^bKey Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai,

200237, P.R. China.

* E-mail: qujp@dlut.edu.cn yangdw@dlut.edu.cn

Contents:

Table S1. Crystal data and structure refinement for complexes 2, 3 and 4	S4
Table S2. Crystal data and structure refinement for complexes 5, 6 and 7	S5
Figure S1. ORTEP diagram of 2.	S6
Table S3. Selected bond distances and angles for 2.	S6
Figure S2. ORTEP diagram of 3.	S7
Table S4. Selected bond distances and angles for 3.	S7
Figure S3. ORTEP diagram of 4.	S 8
Table S5. Selected bond distances and angles for 4.	S 8
Figure S4. ORTEP diagram of 5.	S9
Table S6. Selected bond distances and angles for 5.	S9
Figure S5. ORTEP diagram of 6.	510
Table S7. Selected bond distances and angles for 6.	\$10
Figure S6. ORTEP diagram of 7.	S11
Table S8. Selected bond distances and angles for 7. Selected bond distances	511
Figure S7. ESI-HRMS of 2 in CH ₂ Cl ₂ .	512
Figure S8. ESI-HRMS of 3 in CH ₂ Cl ₂ .	\$13
Figure S9. ESI-HRMS of 4 in CH ₃ CN	\$14
Figure S10. ESI-HRMS of 5 in CH ₂ Cl ₂	\$15
Figure S11. ESI-HRMS of 6 in CH ₂ Cl ₂ .	516
Figure S12. ESI-HRMS of 7 in CH ₂ Cl ₂ .	\$17
Figure S13. The IR (film) spectrum of 2	518
Figure S14. The IR (film) spectrum of 3	518
Figure S15. The IR (film) spectrum of 4	519
Figure S16. The IR (film) spectrum of 5	519
Figure S17. The IR (film) spectrum of 6	520
Figure S18. The IR (film) spectrum of 7	520
Figure S19. The ¹ H NMR spectrum of 2 in CD_2Cl_2	521
Figure S20. The ¹ H NMR spectrum of 3 in CD_2Cl_2 .	521
Figure S21. The ¹ H NMR spectrum of 4 in CD ₃ CN	522
Figure S22. The ¹ H NMR spectrum of 5 in CD ₂ Cl ₂	522
Figure S23. The ¹ H NMR spectrum of 6 in CD_2Cl_2 .	\$23
Figure S24. The ¹ H NMR spectrum of 7 in CD_2Cl_2	\$23
Figure S25. The EPR spectrum of 2 at 100 K.	\$24
Figure S26. The EPR spectrum of 4 at 298 K.	\$24
Figure S27. The EPR spectrum of 5 at 100 K.	\$25
Figure S28. The EPR spectrum of 6 at 298 K.	\$25
Figure S29. The EPR spectrum of 7 at 298 K.	\$26
Figure S30. The cyclic voltammogram of 2 (1 mM) in 0.1 M ^{<i>n</i>} Bu ₄ NPF ₆ /CH ₂ Cl ₂ at 25 ^o C with a	a
scan rate of 100 mV s ^{-1}	526
Figure S31. The cyclic voltammogram of 3 (1 mM) in 0.1 M ^{<i>n</i>} Bu ₄ NPF ₆ /CH ₂ Cl ₂ at 25 ^o C with a	a
scan rate of 100 mV s ^{-1}	527
Figure S32. The cyclic voltammogram of 4 (1 mM) in 0.1 M $^{n}Bu_{4}NPF_{6}$ / CH ₃ CN at 25 $^{\circ}C$ with	a
scan rate of 100 mV s ^{-1}	527

Figure S33. The cyclic voltammogram of 5 (1 mM) in 0.1 M ⁿ Bu ₄ NPF ₆ / CH ₂ Cl ₂ a	t 25 °C with a
scan rate of 100 mV s ⁻¹	S28
Figure S34. The cyclic voltammogram of 6 (1 mM) in 0.1 M ⁿ Bu ₄ NPF ₆ / CH ₂ Cl ₂ a	t 25 °C with a
scan rate of 100 mV s ⁻¹	S28
Figure S35. The cyclic voltammogram of 7 (1 mM) in 0.1 M ⁿ Bu ₄ NPF ₆ / CH ₂ Cl ₂ a	t 25 °C with a
scan rate of 100 mV s ⁻¹ .	S29

Compound	2	3	4
Formula	$C_{28}H_{46}CoFe_2P_2F_{12}S_6$	$C_{28}H_{46}NiFe_2P_2F_{12}S_6$	$C_{36}H_{58}PdFe_2P_2F_{12}S_6N_4$
Formula weight	1035.58	1035.36	1247.26
Crystal dimensions (mm ³)	$0.30\times 0.20\times 0.17$	0.38 ×0.20×0.17	$0.40\times 0.29\times 0.18$
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group	P2(1)/c	P2(1)/c	Fdd2
a (Å)	39.9194(12)	39.3157(14)	16.8637(16)
b (Å)	11.8698(3)	11.8932(5)	52.655(6)
c (Å)	18.0617(6)	18.1269(6)	11.3865(16)
α()	90.00	90.00	90.00
β ()	91.9193(12)	92.5325(13)	90.00
γ(9	90.00	90.00	90.00
Volume (Å ³)	8553.5(4)	8467.7(5)	10111(2)
Z	8	8	8
T (K)	173(2)	173(2)	293(2)
D_{calcd} (g cm ⁻³)	1.608	1.624	1.639
$\mu (\mathrm{mm}^{-1})$	1.494	1.562	1.305
F (000)	4216	4224	5072
No. of rflns. collected	147304	134599	16340
No. of indep. rflns. $/R_{int}$	15051 / 0.0412	14898 / 0.0397	5765 / 0.0385
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	12794	13222	4849
Data / restraints / parameters	15051 / 1/ 965	14898 / 1171 / 975	5765/1/288
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0412 / 0.1111	0.0360/ 0.0938	0.0316 / 0.0665
R_1 / wR_2 (all data)	0.0533 / 0.1158	0.0429 / 0.0967	0.0422 / 0.0710
$\operatorname{GOF}(\operatorname{on} F^2)$	1.197	1.115	1.008
Largest diff. peak and hole (e $Å^{-3}$)	0.955 / -0.822	1.032 / -0.651	0.331 / -0.333
CCDC No.	1431984	1414699	1414702

Table S1. Crystal data and structure refinement for complexes $\mathbf{2}, \mathbf{3}$ and $\mathbf{4}$

Compound	5	6	7
Formula	$C_{29}H_{48}CuFe_2Cl_2PF_6S_6$	$C_{28}H_{46}AgFe_2PF_6S_6$	$C_{32}H_{38}AuFeP_2F_6S_3$
Formula weight	980.14	939.55	947.56
Crystal dimensions (mm ³)	$0.40\times 0.31\times 0.20$	0.30 ×0.21×0.17	$0.39\times 0.19\times 0.17$
Crystal system	Triclinic	Monoclinic	Orthorhombic
Space group	P-1	P2(1)/n	P2(1)2(1)2(1)
a (Å)	8.8586(6)	14.408(2)	12.9715(3)
b (Å)	14.7856(7)	16.545(2	13.7519(4)
c (Å)	17.1123(10)	16.329(2)	20.3281(6)
α()	66.542(3)	90.00	90.00
β(9	78.470(4)	108.902(2)	90.00
γ()	80.944(4)	90.00	90.00
Volume (Å ³)	2007.1(2)	3682.5(9)	3626.18(17)
Z	2	4	4
T (K)	296(2)	296(2)	296(2)
$D_{calcd} (g cm^{-3})$	1.622	1.695	1.736
$\mu (\mathrm{mm}^{-1})$	1.773	1.738	4.755
F (000)	1004	1912	1868
No. of rflns. collected	12759	13532	19663
No. of indep. rflns. $/R_{int}$	6988 / 0.0292	6463 / 0.0226	6356 / 0.0389
No. of obsd. rflns. $[I_0 > 2\sigma(I_0)]$	5716	5085	5456
Data / restraints / parameters	6988 / 385/ 569	6463 / 42 / 397	6356 / 0 / 291
$R_1 / wR_2 [I_0 > 2\sigma(I_0)]$	0.0640 / 0.1706	0.0512/0.1415	0.0313 / 0.0719
R_1 / wR_2 (all data)	0.0767/ 0.1786	0.0661 / 0.1512	0.0404 / 0.0754
$\operatorname{GOF}(\operatorname{on} F^2)$	1.121	1.066	0.984
Largest diff. peak and hole (e $Å^{-3}$)	1.064 / -1.305	1.012 / -1.333	1.323 / -0.428
CCDC No.	1414701	1414700	1414703

Table S2. Crystal data and structure refinement for complexes 5, 6 and 7

Figure S1. ORTEP diagram of 2.

One of the two crystallographically independent molecules is shown. Thermal ellipsoids are shown at 50% probability level. Two PF_6 anions and all hydrogen atoms on carbons are omitted for clarity.

 Table S3. Selected bond distances and angles for 2.

Distances (Å)	Molecule 1	Molecule 2		Molecule 1	Molecule 2
Fe1–Co1	2.5765(7)	2.5921(7)	Fe2–S6	2.233(1)	2.234(1)
Fe2–Co1	2.5747(7)	2.6117(7)	Co1–S1	2.197(1)	2.206(1)
Fe1–S1	2.207(1)	2.221(1)	Co1–S2	2.229(1)	2.247(1)
Fe1–S2	2.225(1)	2.231(1)	Co1–S4	2.203(1)	2.211(1)
Fe1–S3	2.232 (1)	2.238(1)	Co1–S5	2.220(1)	2.223(1)
Fe2–S4	2.225(1)	2.246(1)	Fe1–Cp*1	1.7593(5)	1.7604(5)
Fe2–S5	2.213(1)	2.202(1)	Fe2–Cp*2	1.7498(5)	1.7519(5)
Angles ()	Molecule 1	Molecule 2		Molecule 1	Molecule 2
S1–Fe1–S2	105.83(4)	106.56(4)	Co1–S4–Fe2	71.10(3)	71.75(3)
S1-Fe1-S3	88.37(4)	88.96(4)	S1–Co1–Fe2	134.18(3)	139.06(3)
S4–Fe2–S5	106.29(4)	105.62(4)	S4–Fe2–Co1	54.05(3)	53.52(3)
S4–Fe2–S6	88.48(4)	88.34(4)	S1–Fe1–Co1	54.03(3)	55.01(3)
S1-Co1-S2	106.02(4)	106.50(4)	Fe2–S5–Co1	71.01(3)	72.34(3)
S1-Co1-S4	113.04(4)	115.47(4)	Fe1–S2–Co1	70.68(3)	71.50(3)
S4Co1S5	106.80(4)	106.10(4)	Fe2–S4–Co1	71.10(3)	71.75(3)
Fe1-S1-Co1	71.60(3)	70.93(3)	Fe1–Co1–Fe2	165.58(3)	158.37(3)
Torsion angles ()	Molecule 1	Molecule 2		Molecule 1	Molecule 2
S1–Fe1Co1–S2	157.84(5)	160.60(5)	Cp*1–Cp*2	75.59(13)	77.87(14)
S4–Fe2Co1–S5	160.01(4)	161.17(5)			

Figure S2. ORTEP diagram of 3.

One of the two crystallographically independent molecules is shown. Thermal ellipsoids are shown at 50% probability level. Two PF_6 anions and all hydrogen atoms on carbons are omitted for clarity.

Table S4. Selected bond distances and angles for **3**.

Distances (Å)	Molecule 1	Molecule 2		Molecule 1	Molecule 2
Fe1–Ni1	2.560(2)	2.550(2)	Fe2–S6	2.228(3)	2.234(3)
Fe2–Ni1	2.543 (2)	2.589(2)	Ni1–S1	2.218(3)	2.241(2)
Fe1–S1	2.192(3)	2.210(3)	Ni1–S2	2.189(3)	2.193(3)
Fe1–S2	2.239(3)	2.222(3)	Ni1–S4	2.239(2)	2.212(3)
Fe1–S3	2.233(3)	2.239(3)	Ni1–S5	2.183(3)	2.205(2)
Fe2–S4	2.213(3)	2.187(2)	Fe1–Cp*1	1.753(1)	1.763 (1)
Fe2–S5	2.215(3)	2.247(3)	Fe2–Cp*2	1.761(1)	1.755(1)
Angles ()	Molecule 1	Molecule 2		Molecule 1	Molecule 2
S1-Fe1-S2	106.87(10)	107.66(9)	S4–Ni1–Fe1	116.76(8)	110.45(8)
S1-Fe1-S3	89.56(10)	88.37(10)	Fe1–S1–Ni1	70.97(8)	70.55(8)
S4–Fe2–S5	107.33(10)	106.03(10)	Fe2–S4–Ni1	69.67(8)	71.10(8)
S4–Fe2–S6	89.63(10)	88.79(10)	S4–Fe2–Ni1	55.64(7)	54.39(7)
S1-Ni1-S2	107.67(10)	107.59(9)	S3–Fe1–Ni1	100.27(9)	100.60(8)
S1-Ni1-S4	117.76(10)	116.66(10)	S5–Ni1–Fe2	55.25(7)	55.21(7)
S4-Ni1-S5	107.55(10)	106.63(9)	S6–Fe2–Ni1	101.29(8)	100.23(8)
S1–Ni1–Fe1	54.03(7)	55.26(7)	Fe1-Ni1-Fe2	160.54(6)	157.80(6)
Torsion angles()	Molecule 1	Molecule 2		Molecule 1	Molecule 2
S1–Fe1Ni1–S2	162.13(12)	161.24(11)	Cp*1–Cp*2	75.42(32)	78.83(34)
S4–Fe2Ni1–S5	160.21(12)	161.40(12)			

Figure S3. ORTEP diagram of 4.

Thermal ellipsoids are shown at 50% probability level. Two PF_6 anions and all hydrogen atoms on carbons are omitted for clarity.

 Table S5. Selected bond distances and angles for 4.

Distances (Å)			
Fe1–Pd1	2.9944(5)	Pd1–S2	2.352(1)
Fe1–S1	2.234 (1)	S1C24	1.828(4)
Fe1–S2	2.232(1)	Fe1–C5	2.096(4)
Fe1–S3	2.2528(8)	Fe1–Cp*1	1.7502(4)
Pd1–S1	2.353(1)		
Angles ()			
S1–Fe1–S2	95.88(3)	Fe1–Pd1–Fe1A	179.93(3)
S1–Fe1–S3	89.67(4)	S1–Fe1–Pd1	50.98(3)
S2–Fe1–S3	89.67(4)	S3–Fe1–Pd1	109.47(2)
S1-Pd1-S2	89.62(4)	Fe1–S1–Pd1	81.48(4)
S2-Pd1-S2A	90.36(5)	Fe1–S2–Pd1	81.53(4)
S1–Pd1–Fe1	47.53(3)	Fe1-S2-C21	105.50(14)
S2–Pd1–Fe1	47.49(3)		
Torsion angles ()			
S1–Fe1Pd1–S2	145.75(5)	Ср*1-Ср*2	0.25(22)

Figure S4. ORTEP diagram of 5.

Thermal ellipsoids are shown at 50% probability level. One PF_6 anion and all hydrogen atoms on carbons are omitted for clarity.

Table S6. Selected bond distances and angles for 5.

Distances (Å)			
Fe1–Cu1	2.766(1)	Fe2–S6	2.060(4)
Fe2–Cu1	2.747(1)	Cu1–S1	2.301(2)
Fe1–S1	2.252(2)	Cu1–S2	2.301(2)
Fe1–S2	2.257(2)	Cu1–S4	2.326(3)
Fe1–S3	2.226(2)	Cu1–S5	2.304(2)
Fe2–S4	2.172(3)	Fe1–Cp*1	1.748(1)
Fe2–S5	2.216(2)	Fe2–Cp*2	1.9040(8)
Angles ()			
S1–Fe1–S2	104.61(7)	S4–Cu1–Fe1	115.53(9)
S1–Fe1–S3	88.50(7)	Fe1–S1–Cu1	74.80(6)
S4–Fe2–S5	108.06(10)	Fe2–S4–Cu1	75.18(10)
S4–Fe2–S6	96.4(2)	S3–Fe1–Cu1	99.99(6)
S1–Cu1–S2	101.63(7)	S5–Cu1–Fe2	51.13(5)
S1–Cu1–S4	106.72(13)	Fe1–Cu1–Fe2	165.31(4)
S4–Cu1–S5	100.15(10)	S1–Cu1–Fe1	51.79(4)
Torsion angles ()			
S1–Fe1Cu1–S2	160.55(8)	Cp*1–Cp*2	78.21(45)
S4–Fe2Cu1–S5	167.64(14)		

Figure S5. ORTEP diagram of 6.

Thermal ellipsoids are shown at 50% probability level. One PF_6 anion and all hydrogen atoms on carbons are omitted for clarity.

 Table S7. Selected bond distances and angles for 6.

Distances (Å)			
Fe1–Ag1	3.0570(8)	Fe2–S6	2.215(2)
Fe2–Ag1	3.0689(8)	Ag1–S1	2.538(1)
Fe1–S1	2.267(2)	Ag1–S2	2.567(1)
Fe1–S2	2.273(1)	Ag1–S4	2.621 (2)
Fe1–S3	2.228(2)	Ag1–S5	2.488(1)
Fe2–S4	2.252(2)	Fe1–Cp*1	1.7528(6)
Fe2–S5	2.255(2)	Fe2–Cp*2	1.7553(8)
Angles ()			
S1–Fe1–S2	107.69(6)	S4–Ag1–Fe1	131.78(4)
S1–Fe1–S3	88.15(6)	Fe1–S1–Ag1	78.79(4)
S4–Fe2–S5	106.96(6)	Fe2–S4–Ag1	77.66(5)
S4–Fe2–S6	88.62(8)	S1–Fe1–Ag1	54.54(4)
S1–Ag1–S2	91.78(5)	S3–Fe1–Ag1	100.12(5)
S1–Ag1–S4	108.23(5)	S5–Ag1–Fe2	46.45(3)
S4–Ag1–S5	90.24(5)	S6–Fe2–Ag1	101.42(5)
S1–Ag1–Fe1	46.67(3)	Fe1–Ag1–Fe2	170.94(3)
Torsion angles ()			
S1–Fe1Ag1–S2	158.93(7)	Cp*1–Cp*2	63.83(24)
S4–Fe2Ag1–S5	161.54(7)		

Figure S6. ORTEP diagram of 7.

Thermal ellipsoids are shown at 50% probability level. One PF_6 anion and all hydrogen atoms on carbons are omitted for clarity.

 Table S8. Selected bond distances and angles for 7.

Distances (Å)			
Fe1-S1	2.298(1)	Au1–S1	2.3195
Fe1–S2	2.207(1)	Au1–P1	2.261(1)
Fe1-S3	2.245(1)	Fe1–Cp*	1.7499(9)
Angles (9			
S1–Fe1–S2	102.7	C1–Fe1–S3	139,19(6)
S1-Fe1-S3	87.8	P1-Au2-S1	174.23(6)
\$2-Fe1-\$3	88.8		1,
52 101 55	00.0		

Figure S7. ESI-HRMS of 2 in CH₂Cl₂.

(a) The signal at an m/z = 372.4969 corresponds to $[2-2PF_6]^{2+}$. (b) Calculated isotopic distribution for $[2-2PF_6]^{2+}$ (upper) and the amplifying experimental diagram for $[2-2PF_6]^{2+}$ (bottom).

(a)

Figure S8. ESI-HRMS of 3 in CH₂Cl₂.

(a) The signal at an m/z = 371.9972 corresponds to $[3-2PF_6]^{2+}$, and the signal at an m/z = 888.8773 corresponds to $[3-PF_6]^{+}$. (b) Calculated isotopic distribution for $[3-2PF_6]^{2+}$ (upper) and the amplifying experimental diagram for $[3-2PF_6]^{2+}$ (bottom).

(a)

Figure S9. ESI-HRMS of 4 in CH₃CN.

(a) The signal at an m/z =395.9843 corresponds to [4-2PF₆]²⁺. (b) Calculated isotopic distribution for [4-2PF₆]²⁺ (upper) and the amplifying experimental diagram for [4-2PF₆]²⁺ (bottom).
(a)

(b)

S14

Figure S10. ESI-HRMS of 5 in CH₂Cl₂.

(a) The signal at an m/z = 748.9925 corresponds to $[5-PF_6]^+$. (b) Calculated isotopic distribution for $[5-PF_6]^+$ (upper) and the amplifying experimental diagram for $[5-PF_6]^+$ (bottom).

(a)

Figure S11. ESI-HRMS of 6 in CH₂Cl₂.

(a) The signal at an m/z = 794.9649 corresponds to $[6-PF_6]^+$. (b) Calculated isotopic distribution for

 $[6-PF_6]^+$ (upper) and the amplifying experimental diagram for $[6-PF_6]^+$ (bottom).

(a)

Figure S12. ESI-HRMS of 7 in CH₂Cl₂.

(a) The signal at an m/z = 802.0865 corresponds to $[7-PF_6]^+$. (b) Calculated isotopic distribution for $[7-PF_6]^+$ (upper) and the amplifying experimental diagram for $[7-PF_6]^+$ (bottom).

(a)

Figure S14. The IR (film) spectrum of 3.

Figure S16. The IR (film) spectrum of 5.

Figure S18. The IR (film) spectrum of 7.

Figure S20. The ¹H NMR spectrum of **3** in CD_2Cl_2 .

Figure S22. The ¹H NMR spectrum of **5** in CD_2Cl_2 .

Figure S24. The ¹H NMR spectrum of **7** in CD_2Cl_2 .

Figure S26. The EPR spectrum of 4 at 298 K.

Figure S28. The EPR spectrum of 6 at 298 K.

Figure S30. The cyclic voltammogram of **2** (1 mM) in 0.1 M ${}^{n}Bu_{4}NPF_{6}/CH_{2}Cl_{2}$ at 25 ${}^{\circ}C$ with a scan rate of 100 mV s⁻¹.

Figure S31. The cyclic voltammogram of **3** (1 mM) in 0.1 M n Bu₄NPF₆/CH₂Cl₂ at 25 $^{\circ}$ C with a scan rate of 100 mV s⁻¹.

Figure S32. The cyclic voltammogram of **4** (1 mM) in 0.1 M $^{n}Bu_{4}NPF_{6}/CH_{3}CN$ at 25 $^{\circ}C$ with a scan rate of 100 mV s⁻¹.

Figure S33. The cyclic voltammogram of **5** (1 mM) in 0.1 M n Bu₄NPF₆/ CH₂Cl₂ at 25 $^{\circ}$ C with a scan rate of 100 mV s⁻¹.

Figure S34. The cyclic voltammogram of **6** (1 mM) in 0.1 M n Bu₄NPF₆/ CH₂Cl₂ at 25 $^{\circ}$ C with a scan rate of 100 mV s⁻¹.

S28

Figure S35. The cyclic voltammogram of **7** (1 mM) in 0.1 M n Bu₄NPF₆/ CH₂Cl₂ at 25 $^{\circ}$ C with a scan rate of 100 mV s⁻¹.

