Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

for

A family of rhodium and iridium complexes with versatile semirigid benzylsilyl phosphines: from bidentate to tetradentate coordination

María Vicky Corona-González,^a Julio Zamora-Moreno^a, Cynthia A. Cuevas-Chávez,^{a,b,c} Ernesto Rufino-Felipe,^a Emmanuelle Mothes-Martin,^{b,c} Yannick Coppel,^{b,c} Miguel A. Muñoz-Hernández,^a Laure Vendier,^{b,c} Marcos Flores-Alamo,^d Mary Grellier,^{b,c} Sylviane Sabo-Etienne^{b,c*} and Virginia Montiel-Palma^{a*}

Index

1.	haracterization of compound 1
1.1	¹ H NMR
1.2	¹³ C NMR
1.3	³¹ P NMR
1.4	²⁹ Si NMR
1.5	FT-IR
1.6	X-Ray Diffraction structure and tables
2	pectroscopic characterization of compound 2Rh
2.1	¹ H NMR
2.2	¹³ C NMR
2.3	³¹ P NMR
2.4	²⁹ Si NMR
2.5	¹⁰³ Rh NMR
3.	haracterization of compound 3Rh
3.1	¹ H NMR
3.2	¹³ C NMR
3.3	³¹ P NMR
3.4	²⁹ Si NMR
3.5	¹⁰³ Rh NMR
3.6	FT-IR
3.7	X-Ray Diffraction structure and tables

4.	Cha	aracterization of compound 4Rh	49
4	.1	Solid state ¹ H NMR	
4	.2	Solid state ¹³ C NMR	50
4	.3	Solid state ³¹ P NMR	
4	.4	Solid state ²⁹ Si NMR	
4	.5	FT-IR	
4	.6	X-Ray Diffraction structure and tables	
5.	Cha	aracterization of compound 5Rh	59
5	.1 ¹ H	1 NMR	59
5	.2	¹³ C NMR	61
5	.3	³¹ P NMR	63
5	.4 ²⁹ S	Si NMR	64
5	.5	FT-IR	65
5	.6	X-Ray Diffraction structure and tables	66
6.	Cha	aracterization of compound 2Ir	72
6	5.1 ¹ H	1 NMR	72
6	.2	¹³ C NMR	
6	.3	³¹ P NMR	74
6	.4	²⁹ Si NMR	75
6	.5	FT-IR	
7	Cha	aracterization of compound 3Ir	77
7	.1	¹ H NMR	77
7	.2	¹³ C NMR	
7	.3	³¹ P NMR	

7.6	X-Ray Diffraction structure and tables	82
8. Sp	ectroscopic characterization of compound 4Ir	98
8.1	¹ H NMR	98
8.2	¹³ C NMR	99
8.3	³¹ P NMR	100
8.4	²⁹ Si NMR	101
8.5	FT-IR	102

Figure S 1. ¹H NMR spectrum (400 MHz, toluene-d₈) of compound **1** at room temperature.

Figure S 2. Expansion of the signal of the ¹H NMR spectrum at δ = 4.25 ppm due to the siliconbonded hydrogen in compound **1**.

1.2 ¹³C NMR

Figure S 3. ¹³C{¹H} NMR spectrum of compound **1** (176.008 MHz, toluene-d₈).

1.3 ³¹P NMR

Figure S 4. ${}^{31}P{}^{1}H{}$ (161.9MHz, benzene-d₆) NMR spectrum of compound 1 at room temperature.

1.4 ²⁹Si NMR

Figure S 5. DEPT ²⁹Si (75.54 MHz, benzene-d₆, bottom) and DEPT ²⁹Si {¹H} spectra of compound 1.

Figure S 6. FT- IR spectrum (KBr) of compound 1.

1.6 X-Ray Diffraction structure and tables

Figure S 7. ORTEP drawings of compound 1 showing ellipsoids at 50% probability level.

X-Ray diffaction tables for compound 1

Table	S1 - Bond D for: m	istances (Angs m104 P12	strom) 21/c 1	R = 0.10	
P1	-C1	1.834(6)	C14	-C15	1.387(9)
P1	-C10	1.853(6)	C19	-C20	1.414(8)
P1	-C19	1.841(6)	C19	-C24	1.387(8)
Si1	-C7	1.896(7)	C20	-C25	1.505(8)
Si1	-C8	1.856(9)	C20	-C21	1.413(8)
Si1	-C9	1.852(8)	C21	-C22	1.374(9)
Si2	-C16	1.873(7)	C22	-C23	1.383(9)
Si2	-C17	1.863(8)	C23	-C24	1.389(8)
Si2	-C18	1.857(10)	C3	-H3A	0.9300
Si3	-C25	1.890(6)	C4	-H4	0.9300
Si3	-C26	1.863(10)	C5	-Н5	0.9300
Si3	-C27	1.871(8)	C6	-Н6	0.9300
Sil	-H1	0.9800	C7	-H7A	0.9700
Si2	-H2	0.9800	C7	-H7B	0.9700
Si3	-НЗ	0.9800	C8	-H8A	0.9600
C1	-C6	1.404(8)	C8	-H8B	0.9600
C1	-C2	1.415(9)	C8	-H8C	0.9600
C2	-C3	1.413(9)	С9	-H9A	0.9600
C2	-C7	1.510(10)	С9	-Н9В	0.9600
C3	-C4	1.387(10)	С9	-H9C	0.9600
C4	-C5	1.377(9)	C12	-H12	0.9300
C5	-C6	1.383(8)	C13	-H13	0.9300

C10	-C1	5	1.38	81(8)	C1	14	-F	114		0.9300		
C10	-C1	1	1.42	28(8)	C1	15	-F	H15		0.9300		
C11	-C1	6	1.50	04(9)	Cl	16	-F	H16A		0.9700		
C11	-C1	2	1.38	34(9)	C1	16	-F	H16B		0.9700		
C12	-C1	3	1.38	39(9)	Cl	L7	-F	H17A		0.9600		
C13	-C1	4	1.38	37(9)	C1	L7	-F	H17B		0.9600		
C17	-H1	7C	0	.9600	C2	25	-F	125A		0.9700		
C18	-H1	8A	0	.9600	C2	25	-F	125B		0.9700		
C18	-H1	8B	0	.9600	C2	26	-F	126A		0.9600		
C18	-H1	8C	0	.9600	C2	26	-F	126B		0.9600		
C21	-H2	1	0	.9300	C2	26	-F	126C		0.9600		
C22	-H2	2	0	.9300	C2	27	-F	127A		0.9600		
C23	-H2	3	0	.9300	C2	27	-F	127B		0.9600		
C24	-H2	4	0	.9300	C2	27	-F	127C		0.9600		
Table S2	- Bon for	d Angles : mm104]	(Degrees) P 1 21/c	1	R =	0.	.10				
C1 -	P1	-C10		102.5(3)		C3		-C4	-C5		120.5(6)
C1 -	P1	-C19		100.7(2)		C4		-C5	-C6		119.7(6)
C10 -	P1	-C19		101.2(2)		C1		-C6	-C5		121.4(6)
C7 -	Si1	-C8		112.4(3)		Si1		-C7	-C2		110.3(4)
C7 -	Sil	-C9		108.3(3)		C11		-C10	-C15	5	119.0(5)
C8 -	Sil	-C9		111.5(4)		P1		-C10	-C15	5	122.6(4)
C16 -	Si2	-C17		109.9(3)		P1		-C10	-C11	L	118.4(4)
C16 -	Si2	-C18		110.6(4)		C10		-C11	-C12	2	117.9(5)
C17 -	Si2	-C18		111.2(4)		C10		-C11	-C16	5	122.5(5)

C25	-Si3	-C26	110.0(4)	C12	-C11	-C16	119.5(6)
C25	-Si3	-C27	110.7(3)	C11	-C12	-C13	122.4(6)
C26	-Si3	-C27	109.9(4)	C12	-C13	-C14	119.4(6)
C8	-Sil	-H1	108.00	C13	-C14	-C15	119.2(6)
С9	-Sil	-H1	108.00	C10	-C15	-C14	122.1(5)
C7	-Sil	-H1	108.00	Si2	-C16	-C11	112.2(4)
C18	-Si2	-H2	108.00	P1	-C19	-C24	122.0(4)
C16	-Si2	-H2	108.00	C20	-C19	-C24	119.2(5)
C17	-Si2	-H2	108.00	P1	-C19	-C20	118.8(4)
C25	-Si3	-НЗ	109.00	C21	-C20	-C25	119.1(5)
C27	-Si3	-НЗ	109.00	C19	-C20	-C25	123.2(5)
C26	-Si3	-НЗ	109.00	C19	-C20	-C21	117.6(5)
P1	-C1	-C6	122.2(5)	C20	-C21	-C22	122.1(5)
P1	-C1	-C2	118.6(4)	C21	-C22	-C23	119.9(5)
C2	-C1	-C6	119.2(5)	C22	-C23	-C24	119.3(5)
C1	-C2	-C3	118.2(6)	C19	-C24	-C23	122.0(5)
C1	-C2	-C7	121.8(5)	Si3	-C25	-C20	111.0(4)
C3	-C2	-C7	119.9(6)	C2	-C3	-H3A	120.00
C2	-C3	-C4	121.0(6)	C4	-C3	-H3A	120.00
C3	-C4	-H4	120.00	C15	-C14	-H14	120.00
C5	-C4	-H4	120.00	C10	-C15	-H15	119.00
C4	-C5	-H5	120.00	C14	-C15	-H15	119.00
C6	-C5	-Н5	120.00	Si2	-C16	-H16A	109.00
C1	-C6	-н6	119.00	Si2	-C16	-H16B	109.00
C5	-C6	-н6	119.00	C11	-C16	-H16A	109.00
Si1	-C7	-H7A	110.00	C11	-C16	-H16B	109.00

Si1	-C7	-Н7В	110.00	H16A	-C16	-H16B	108.00
C2	-C7	-H7A	110.00	Si2	-C17	-H17A	109.00
C2	-C7	-Н7В	110.00	Si2	-C17	-H17B	109.00
H7A	-C7	-н7в	108.00	Si2	-C17	-H17C	109.00
Si1	-C8	-H8A	109.00	H17A	-C17	-H17B	110.00
Si1	-C8	-H8B	109.00	H17A	-C17	-H17C	109.00
Si1	-C8	-H8C	109.00	Н17В	-C17	-H17C	109.00
H8A	-C8	-H8B	109.00	Si2	-C18	-H18A	109.00
H8A	-C8	-H8C	109.00	Si2	-C18	-H18B	109.00
H8B	-C8	-H8C	110.00	Si2	-C18	-H18C	109.00
Si1	-C9	-H9A	109.00	H18A	-C18	-H18B	109.00
Si1	-C9	-Н9В	109.00	H18A	-C18	-H18C	110.00
Si1	-C9	-H9C	109.00	H18B	-C18	-H18C	109.00
H9A	-C9	-Н9В	109.00	C20	-C21	-H21	119.00
н9А	-C9	-H9C	109.00	C22	-C21	-H21	119.00
Н9В	-C9	-H9C	110.00	C21	-C22	-H22	120.00
C11	-C12	-H12	119.00	C23	-C22	-H22	120.00
C13	-C12	-H12	119.00	C22	-C23	-H23	120.00
C12	-C13	-H13	120.00	C24	-C23	-H23	120.00
C14	-C13	-H13	120.00	C19	-C24	-H24	119.00
C13	-C14	-H14	120.00	C23	-C24	-H24	119.00

Table	S2 - Bor for	nd Angles : mm104	(Degrees) P 1 21/c 1	(contir R = (nued) 0.10		
Si3	-C25	-H25A	109.00	H26A	-C26	-H26C	109.00
si3	-C25	-H25B	109.00	H26B	-C26	-H26C	109.00
C20	-C25	-H25A	109.00	Si3	-C27	-H27A	110.00
C20	-C25	-Н25В	109.00	Si3	-C27	-H27B	110.00
H25A	-C25	-Н25В	108.00	Si3	-C27	-H27C	109.00
Si3	-C26	-H26A	109.00	H27A	-C27	-H27B	109.00
Si3	-C26	-H26B	110.00	H27A	-C27	-H27C	109.00
Si3	-C26	-H26C	109.00	H27B	-C27	-H27C	109.00
H26A	-C26	-H26B	109.00				

Translation of Symmetry Code to Equiv.Pos

a =[3666.00] = [3 666]	=1-x,1-y,1-z
b =[4554.00] = [4_565]	=x,1/2-y,-1/2+z
c =[1556.00] = [1_556]	=x,y,1+z
d =[4555.00] = [4_566]	=x,1/2-y,1/2+z
e =[1554.00] = [1_554]	=x,y,-1+z
f =[2545.00] = [2_545]	=-x,-1/2+y,1/2-z
g =[2656.00] = [2_656]	=1-x,1/2+y,3/2-z
h =[2555.00] = [2_555]	=-x,1/2+y,1/2-z
i =[3566.00] = [3_566]	=-x,1-y,1-z
j =[2646.00] = [2_646]	=1-x,-1/2+y,3/2-z

- 2 Spectroscopic characterization of compound **2Rh**
- 2.1 ¹H NMR

Figure S 8. ¹H NMR spectrum (300 MHz, told-d₈) of complex **2Rh** at room temperature. Inset showing the signal due to η^2 -(Si-H) with an average value of 51 Hz.

Figure S 9. High field region of the ¹H NMR spectrum (300 MHz, Tol-d₈) of **2Rh** at room temperature. Signal at δ 2.09 corresponds to residual solvent.

Figure S 10. ¹H NMR spectrum (400 MHz, tol-d₈) at 223K of compound 2Rh.

Figure S 11. Variable temperature ¹H NMR spectra (400 MHz, Tol-d₈) of complex 2Rh.

Figure S 12. COSY ¹H-¹H $\{$ ³¹P $\}$ (400MHz, tol-d₈, 223 K) spectrum of compound 2Rh.

Figure S 13. NOESY ¹H-¹H NMR spectrum (400 MHz, tol-d₈) at 223 K of compound 2Rh.

2.2 ¹³C NMR

Figure S 14. ¹³C{¹H} NMR spectrum (100.61 MHz, toluene-d₈) of complex 2Rh at 223 K.

Figure S 15. ¹³C{¹H} NMR spectrum (100.61 MHz, toluene-d₈) of complex 2Rh with ³¹P decoupling (δ 27.7) at 223 K.

Figure S 16. HMQC ¹H-¹³C (400 MHz, tol-d₈) NMR spectrum of compound 2Rh.

Figure S 17. HMBC ¹H-¹³C (400 MHz, tol-d₈) NMR spectrum at 223 K of compound 2Rh.

2.3 ³¹P NMR

Figure S 18. ${}^{31}P{}^{1}H$ NMR spectrum (161.92 MHz, toluene-d₈) of complex 2Rh at 223 K.

2.4 ²⁹Si NMR

Figure S 19. DEPT ²⁹Si{¹H}NMR spectrum (79.46 MHz, toluene-d₈) at 223 K of complex 2Rh.

Figure S 20. DEPT ${}^{29}Si{}^{1}H{}^{31}P{}$ NMR spectrum (79.46 MHz, toluene-d₈) at 223 K of compound 2Rh.

Figure S 21. HMQC ²⁹Si-¹H (79.46 MHz, toluene-d₈) NMR spectrum of compound **2Rh** at 223 K.

2.5 ¹⁰³Rh NMR

Figure S 22. Partial region of the HMQC 103 Rh- 1 H { 31 P} (400 MHz, Tol- d₈) at 223 K of compound 2Rh.

3. Characterization of compound **3Rh**

3.1¹H NMR

At ambient temperature the ¹H NMR spectrum of **3Rh** in C₆D₆ shows six singlet signals at δ –0.22, 0.05, 0.49, 0.59, 0.65 and 1.28 for the methyl groups each accounting for six hydrogens. If the solid state structure is to be preserved, the observation of six methyl signals is indicative of hindered rotation around the Si-O-Si bridge which makes the two methyl groups on each Si inequivalent. In addition, six methylene hydrogen signals are observed between δ 1.8 and 3.7. The diastereotopic hydrogens of each methylene give rise to a doublet and a doublet of doublet, the latter one due to additional coupling with phosphorous. The most shielded signal at δ 1.91 also features an additional small coupling with rhodium (³J_{H-Rh} 2 Hz).

Figure S 23. ¹H NMR (400 Hz, C₆D₆) spectrum of complex 3Rh at room temperature.

Figure S 24. Partial region of the ¹H NMR (400 Hz, C₆D₆) of complex 3Rh. * Et₂O.

Figure S 25. COSY ¹H-¹H (400 Hz, C₆D₆) NMR spectrum of complex 3Rh.

Figure S 26. COSY ¹H-¹H (400 Hz, C₆D₆) of complex **3Rh**.

3.2 ¹³C NMR

Six carbon methyl singlet signals between 2.95 < δ < 9.55 were observed while three carbon benzyl doublets between 28.7 < δ < 33.3 with ${}^{3}J_{C-P}$ coupling constants of 13 Hz are present in the ${}^{13}C{}^{1}H$ NMR spectrum.

Figure S 27. ¹³C{¹H} (100.58 MHz, C₆D₆) NMR spectrum of complex 3Rh at room temperature.

3.3 ³¹P NMR

Figure S 28. ³¹P(¹H) (161.92 MHz, C₆D₆) NMR spectrum at ambient temperature of complex 3Rh.

3.4 ²⁹Si NMR

Figure S 29. HMQC ${}^{29}Si-{}^{1}H{}^{31}P{}$ (C₆D₆) at ambient temperature for complex 3Rh.

Figure S 30. HMQC $^{103}Rh^{-1}H\{^{31}P\}$ (12.59 MHz, C₆D₆) of compound 3Rh

3.6 FT-IR

Figure S 31. FT- IR (ATR) spectrum of complex 3Rh.

3.7 X-Ray Diffraction structure and tables

Figure S 32. ORTEP drawing of compound **3Rh** with thermal ellipsoids at 30% probability. Hydrogen atoms and methyl groups on silicon have been removed for clarity.

Tables for complex 3Rh

Table S3. Bond lengths [A] and angles [deg] for vicky261115.

C(1)-C(2)	1.401(4)
C(1)-C(6)	1.414(4)
C(1)-P(1)	1.837(3)
C(2)-C(3)	1.385(4)
С(2)-Н(2)	0.9500
C(3)-C(4)	1.380(4)
С(3)-Н(3)	0.9500
C(4)-C(5)	1.382(5)
C(4)-H(4)	0.9500
C(5)-C(6)	1.390(5)
С(5)-Н(5)	0.9500
C(6)-C(7)	1.502(4)

C(7)-Si(1)	1,896(3)
C(7) - H(7A)	0 9900
C(7) = H(7R)	0.9900
C(8) - Si(1)	1 887(3)
$C(0) = U(2\lambda)$	0.0000
C(0) = H(0R)	0.9000
C(8) - H(8B)	0.9800
C(8) - H(8C)	0.9800
$C(9) - S_1(1)$	1.8/3(4)
С (9) – Н (9А)	0.9800
С(9)-Н(9В)	0.9800
С(9)-Н(9С)	0.9800
C(10)-C(15)	1.399(4)
C(10)-C(11)	1.405(4)
C(10)-P(1)	1.840(3)
C(11)-C(12)	1.394(4)
C(11)-C(16)	1.510(4)
C(12)-C(13)	1.384(4)
С(12)-Н(12)	0.9500
C(13) - C(14)	1.377(4)
С(13)-Н(13)	0.9500
C(14) - C(15)	1.389(4)
C(14) - H(14)	0.9500
C(15) - H(15)	0.9500
C(16) = Si(2)	1,912(3)
C(16) - H(16A)	0 9900
C(16) - H(16B)	0.9900
C(17) - Si(2)	1 886(3)
$C(17) - H(17\Delta)$	0 9800
C(17) = U(17P)	0.9000
C(17) = U(17C)	0.9000
C(17) II(170)	1 060/2)
C(10) - 51(2)	1.000(3)
C(10) - H(10A)	0.9800
C(10) - H(100)	0.9000
C(10) - H(10C)	1,200(4)
C(19) - C(54)	1.399(4)
C(19) - C(20)	1.411(4)
C(19) - P(1)	1.848(3)
C(20) - C(51)	1.402(4)
C(20) - C(21)	1.510(4)
C(21)-Si(6)	1.889(3)
С(21)-Н(21А)	0.9900
С(21)-Н(21В)	0.9900
C(22)-Si(6)	1.850(3)
С(22)-Н(22А)	0.9800
С(22)-Н(22В)	0.9800
С(22)-Н(22С)	0.9800
C(23)-Si(6)	1.847(3)
С(23)-Н(23А)	0.9800
С(23)-Н(23В)	0.9800
С(23)-Н(23С)	0.9800
C(24)-C(25)	1.520(4)
C(24)-Si(5)	1.885(3)
С(24)-Н(24А)	0.9900
С(24)-Н(24В)	0.9900

C(25)-C(48)	1.402(4)
C(25)-C(26)	1.408(4)
C(26)-C(45)	1.404(4)
C(26)-P(2)	1.845(3)
C(27)-C(44)	1.397(4)
C(27)-C(28)	1.409(4)
C(27)-P(2)	1.835(3)
C(28)-C(41)	1.393(4)
C(28)-C(29)	1.501(4)
C(29)-Si(4)	1.904(3)
C(29)-H(29A)	0.9900
C(29) - H(29B)	0.9900
C(30) - S1(3)	1.886(3)
C(30) = H(30R)	0.9800
C(30) = H(30C)	0.9800
C(30) = R(300)	1 891 (3)
$C(31) = H(31\Delta)$	0 9800
C(31) - H(31B)	0.9800
C(31) - H(31C)	0.9800
C(32) - C(33)	1,497(4)
C(32)-Si(3)	1.904(3)
C(32) - H(32A)	0.9900
С(32)-Н(32В)	0.9900
C(33) -C(38)	1.389(4)
C(33)-C(34)	1.413(4)
C(34)-C(35)	1.395(4)
C(34)-P(2)	1.835(3)
C(35)-C(36)	1.390(4)
С(35)-Н(35)	0.9500
C(36)-C(37)	1.383(5)
С(36)-Н(36)	0.9500
C (37) – C (38)	1.382(5)
C(37) - H(37)	0.9500
C(38) - H(38)	0.9500
C(39) - S1(4)	1.883(3)
C(39) - H(39P)	0.9800
C(39) = H(39C)	0.9800
C(40) - Si(4)	1 874(3)
C(40) - H(40A)	0.9800
C(40) - H(40B)	0.9800
C(40) - H(40C)	0.9800
C(41) - C(42)	1.384(5)
С(41)-Н(41)	0.9500
C(42)-C(43)	1.378(5)
С(42)-Н(42)	0.9500
C(43)-C(44)	1.381(4)
С(43)-Н(43)	0.9500
С(44)-Н(44)	0.9500
C(45)-C(46)	1.385(4)
C(45) - H(45)	0.9500
C(46) - C(47)	1.379(5)
С(46)-Н(46)	0.9500

C (47) - C (48) $C (47) - H (47)$ $C (48) - H (48)$ $C (49) - Si (5)$ $C (49) - H (49A)$ $C (49) - H (49B)$ $C (49) - H (49C)$ $C (50) - H (49C)$ $C (50) - H (50A)$ $C (50) - H (50B)$ $C (50) - H (50C)$ $C (51) - C (52)$ $C (51) - H (51)$ $C (52) - C (53)$ $C (52) - H (52)$ $C (53) - C (54)$ $C (53) - H (53)$ $C (55) - H (55A)$ $C (55) - H (55A)$ $C (55) - H (55B)$ $C (55) - H (56B)$ $C (56) - H (56B)$ $C (58) - O (1)$ $C (58) - C (59)$ $C (58) - H (58B)$ $C (59) - H (59B)$ $C (59) - H (59C)$ $Si (1) - Rh (1)$ $Si (2) - Rh (2)$ $Si (6) - O (2)$ $P (1) - Rh (1)$ $P (2) - Rh (2)$ $C1 (1) - Rh (2)$ $C1 (1) - Rh (2)$ $C1 (2) - Rh (2)$	1.381(4) 0.9500 0.9500 1.850(4) 0.9800 0.9800 0.9800 0.9800 0.9800 1.367(4) 0.9800 0.9800 1.388(4) 0.9500 1.379(4) 0.9500 1.385(4) 0.9500 1.462(7) 0.9800 0.9800 0.9800 1.454(6) 0.9900 0.9900 1.411(5) 1.499(6) 0.9900 0.9900 0.9900 0.9900 0.9900 0.9800 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9900 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0
C1 (2) - Rh (2) $C1 (2) - Rh (1)$ $C (2) - C (1) - C (6)$ $C (2) - C (1) - P (1)$ $C (6) - C (1) - P (1)$ $C (3) - C (2) - C (1)$ $C (3) - C (2) - H (2)$ $C (1) - C (2) - H (2)$ $C (4) - C (3) - C (2)$ $C (4) - C (3) - H (3)$ $C (2) - H (3)$	2.3994(7) 2.5970(7) 118.8(3) 118.4(2) 122.7(2) 121.6(3) 119.2 119.2 119.4(3) 120.3

C(3) - C(4) - C(5)	119.6(3)
C(5) - C(4) - H(4) C(5) - C(4) - H(4)	120.2
C(4) - C(5) - C(6)	120.2 122.4(3)
C(4) = C(5) = H(5)	118.8
C(6) = C(5) = H(5)	118.8
C(5) - C(6) - C(1)	118.0(3)
C(5) - C(6) - C(7)	119.7(3)
C(1) - C(6) - C(7)	122.2(3)
C(6) - C(7) - Si(1)	114.5(2)
С(6)-С(7)-Н(7А)	108.6
Si(1)-C(7)-H(7A)	108.6
С(6)-С(7)-Н(7В)	108.6
Si(1)-C(7)-H(7B)	108.6
H(7A)-C(7)-H(7B)	107.6
Si(1)-C(8)-H(8A)	109.5
Si(1)-C(8)-H(8B)	109.5
H(8A) - C(8) - H(8B)	109.5
$S_1(1) - C(8) - H(8C)$	109.5
H(8A) = C(8) = H(8C)	109.5
n(OD) = C(O) = n(OC) Si(1) = C(O) = H(OD)	109.5
Si(1) = C(9) = H(9R)	109.5
H(9A) - C(9) - H(9B)	109.5
Si(1)-C(9)-H(9C)	109.5
H (9A) - C (9) - H (9C)	109.5
Н(9B)-С(9)-Н(9C)	109.5
C(15)-C(10)-C(11)	119.4(2)
C(15)-C(10)-P(1)	119.0(2)
C(11) - C(10) - P(1)	121.6(2)
C(12) - C(11) - C(10)	118.0(3)
C(12) - C(11) - C(16)	119.1(3)
C(10) = C(11) = C(10) C(13) = C(12) = C(11)	122.7(3) 122.3(3)
C(13) = C(12) = H(12)	118 9
C(11) - C(12) - H(12)	118.9
C(14) - C(13) - C(12)	119.5(3)
С(14)-С(13)-Н(13)	120.2
С(12)-С(13)-Н(13)	120.2
C(13)-C(14)-C(15)	119.6(3)
С(13)-С(14)-Н(14)	120.2
С(15)-С(14)-Н(14)	120.2
C(14) - C(15) - C(10)	121.2(3)
C(14) - C(15) - H(15)	119.4
C(10) - C(15) - H(15)	119.4
C(11) = C(16) = S1(2) $C(11) = C(16) = H(16\lambda)$	107.7(2)
$S_{1}(2) - C(16) - H(16A)$	110.2
C(11) - C(16) - H(16B)	110.2
Si(2)-C(16)-H(16B)	110.2
H(16A)-C(16)-H(16B)	108.5
Si(2)-C(17)-H(17A)	109.5
Si(2)-C(17)-H(17B)	109.5
Н(17А)-С(17)-Н(17В)	109.5

Si(2)-C(17)-H(17C) H(17A)-C(17)-H(17C)	109.5 109.5
H (17B) -C (17) -H (17C) Si (2) -C (18) -H (18A)	109.5 109.5
S1 (2) -C (18) -H (18B) H (18A) -C (18) -H (18B)	109.5
Si(2)-C(18)-H(18C) H(18A)-C(18)-H(18C)	109.5 109.5
H (18B) - C (18) - H (18C)	109.5
C(54) - C(19) - C(20) C(54) - C(19) - P(1)	119.3(2)
C(20)-C(19)-P(1) C(51)-C(20)-C(19)	121.3(2) 117.6(2)
C (51) -C (20) -C (21)	118.2(2)
C(20)-C(21)-Si(6)	124.1(2) 120.6(2)
С(20)-С(21)-Н(21А) Si(6)-С(21)-Н(21А)	107.2
C(20) –C(21) –H(21B)	107.2
Sı(6)-С(21)-Н(21В) Н(21А)-С(21)-Н(21В)	107.2 106.8
Si(6)-C(22)-H(22A) Si(6)-C(22)-H(22B)	109.5 109.5
H (22A) -C (22) -H (22B)	109.5
Ы (8) -С (22) -Н (22С) Н (22А) -С (22) -Н (22С)	109.5
Н(22B)-С(22)-Н(22С) Si(6)-С(23)-Н(23А)	109.5 109.5
Si (6) -C (23) -H (23B)	109.5
Si(6)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C) H(23B)-C(23)-H(23C)	109.5 109.5
C(25)-C(24)-Si(5) C(25)-C(24)-H(24A)	120.9(2) 107 1
Si(5)-C(24)-H(24A)	107.1
С(25)-С(24)-Н(24В) Si(5)-С(24)-Н(24В)	107.1 107.1
H(24A) -C(24) -H(24B) C(48) -C(25) -C(26)	106.8 117.7(3)
C(48) - C(25) - C(24)	118.7(3)
C (26) – C (25) – C (24) C (45) – C (26) – C (25)	123.6(2) 119.6(3)
C(45)-C(26)-P(2) C(25)-C(26)-P(2)	119.1(2) 121.3(2)
C(44) - C(27) - C(28) C(44) - C(27) - D(2)	119.4(3)
C (28) – C (27) – P (2)	120.3(2)
C(41)-C(28)-C(27) C(41)-C(28)-C(29)	118.0(3) 120.2(3)
C(27)-C(28)-C(29) C(28)-C(29)-Si(4)	121.5(3) 107.4(2)
C (28) – C (29) – H (29A)	110.2
Sı(4)-C(29)-H(29A)	110.2

С(28)-С(29)-Н(29В)	110.2
S1(4) - C(29) - H(29B)	110.2
H(29A) = C(29) = H(29B)	108.5
$S_{1}(3) = C(30) = H(30A)$	109.5
$D_{1}(203) = C(20) = H(20B)$	109.5
H(SUA) = C(SU) = H(SUB)	109.5
P(303) = C(30) = P(30C)	109.5
H(30R) = C(30) = H(30C)	109.5
n(300) = c(30) = n(300)	109.5
Si(3) - C(31) - H(31B)	109.5
H(31A) - C(31) - H(31B)	109.5
Si(3)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
C(33)-C(32)-Si(3)	110.3(2)
С(33)-С(32)-Н(32А)	109.6
Si(3)-C(32)-H(32A)	109.6
С(33)-С(32)-Н(32В)	109.6
Si(3)-C(32)-H(32B)	109.6
H(32A)-C(32)-H(32B)	108.1
C(38)-C(33)-C(34)	118.0(3)
C(38) - C(33) - C(32)	120.2(3)
C(34) - C(33) - C(32)	121.8(2)
C(35) = C(34) = C(33)	119.6(3)
C(33) = C(34) = P(2)	120.4(2) 120.0(2)
C(35) = C(35) = C(34)	120.0(2) 121.1(3)
C(36) - C(35) - H(35)	119.4
C(34) - C(35) - H(35)	119.4
C(37) - C(36) - C(35)	119.1(3)
С(37)-С(36)-Н(36)	120.4
С(35)-С(36)-Н(36)	120.4
C(38)-C(37)-C(36)	120.2(3)
С(38)-С(37)-Н(37)	119.9
С(36)-С(37)-Н(37)	119.9
C(37)-C(38)-C(33)	121.8(3)
С(37)-С(38)-Н(38)	119.1
C(33) - C(38) - H(38)	119.1
$S_1(4) - C(39) - H(39A)$	109.5
51(4) - C(39) - H(39B)	109.5
H(39A) = C(39) = H(39B)	109.5
P(397) = C(39) = H(39C)	109.5
H(39R) = C(39) = H(39C)	109.5
Si(4) - C(40) - H(40A)	109.5
Si(4)-C(40)-H(40B)	109.5
H(40A)-C(40)-H(40B)	109.5
Si(4)-C(40)-H(40C)	109.5
H(40A)-C(40)-H(40C)	109.5
Н(40В)-С(40)-Н(40С)	109.5
C(42)-C(41)-C(28)	121.8(3)
С(42)-С(41)-Н(41)	119.1
С(28)-С(41)-Н(41)	119.1

C(43)-C(42)-C(41)	120.0(3)
C(43) - C(42) - H(42)	120.0
C(41) - C(42) - H(42)	120.0
C(42) - C(43) - C(44)	119.5(3)
C(42) - C(43) - H(43)	120.2
C(44) - C(43) - H(43)	120.2
C(43) - C(44) - C(27)	121.2(3)
C(43) - C(44) - H(44)	119.4
C(2/) - C(44) - H(44)	119.4
C(46) - C(45) - C(26)	121.2(3)
C(46) - C(45) - H(45)	119.4
C(26) - C(45) - H(45)	119.4
C(47) - C(46) - C(45)	119.4(3)
C(4/) - C(46) - H(46)	120.3
C(45) - C(46) - H(46)	120.3
C(46) - C(47) - C(48)	120.2(3)
C(46) - C(47) - H(47)	119.9
C(48) - C(47) - H(47)	119.9
C(47) - C(48) - C(25)	121.9(3)
C(47) - C(48) - H(48)	119.0
C(23) = C(40) = H(40)	109.0
$S_{1}(5) = C(49) = H(49R)$ $S_{1}(5) = C(49) = H(49R)$	109.5
U(101) = C(10) = U(100)	109.5
r(49R) = C(49) - H(49C)	109.5
H(49A) - C(49) - H(49C)	109.5
H(49B) - C(49) - H(49C)	109.5
Si(5) - C(50) - H(50A)	109.5
Si(5) - C(50) - H(50B)	109.5
H(50A) - C(50) - H(50B)	109.5
Si(5)-C(50)-H(50C)	109.5
H(50A)-C(50)-H(50C)	109.5
H(50B)-C(50)-H(50C)	109.5
C(52)-C(51)-C(20)	122.5(3)
С(52)-С(51)-Н(51)	118.8
С(20)-С(51)-Н(51)	118.8
C(53)-C(52)-C(51)	119.3(3)
С(53)-С(52)-Н(52)	120.4
С(51)-С(52)-Н(52)	120.4
C(52)-C(53)-C(54)	119.7(3)
С(52)-С(53)-Н(53)	120.2
С(54)-С(53)-Н(53)	120.2
C(53)-C(54)-C(19)	121.6(3)
С(53)-С(54)-Н(54)	119.2
С(19)-С(54)-Н(54)	119.2
С(56)-С(55)-Н(55А)	109.5
С(56)-С(55)-Н(55В)	109.5
H(55A)-C(55)-H(55B)	109.5
С(56)–С(55)–Н(55С)	109.5
H(55A)-C(55)-H(55C)	109.5
H(55B) - C(55) - H(55C)	109.5
U(1) = C(56) = C(55)	109.5(5)
U(1) - C(56) - H(56A)	100.0
С(55)-С(56)-Н(56А)	T0 3. 8

O(1)-C(56)-H(56B)	109.8
С(55)-С(56)-Н(56В)	109.8
H(56A)-C(56)-H(56B)	108.2
O(1) - C(58) - C(59)	108.2(3)
O(1)-C(58)-H(58A)	110.1
С(59)-С(58)-Н(58А)	110.1
O(1)-C(58)-H(58B)	110.1
С(59)-С(58)-Н(58В)	110.1
H(58A)-C(58)-H(58B)	108.4
С(58)-С(59)-Н(59А)	109.5
С(58)-С(59)-Н(59В)	109.5
H(59A)-C(59)-H(59B)	109.5
С(58)-С(59)-Н(59С)	109.5
H(59A)-C(59)-H(59C)	109.5
H(59B)-C(59)-H(59C)	109.5
C(9)-Si(1)-C(8)	104.92(18)
C(9)-Si(1)-C(7)	105.98(17)
C(8)-Si(1)-C(7)	107.42(14)
C(9)-Si(1)-Rh(1)	106.03(11)
C(8)-Si(1)-Rh(1)	116.72(13)
C(7)-Si(1)-Rh(1)	114.78(10)
C(18)-Si(2)-C(17)	102.05(16)
C(18)-Si(2)-C(16)	114.45(17)
C(17)-Si(2)-C(16)	104.43(15)
C(18)-Si(2)-Rh(1)	111.00(12)
C(17)-Si(2)-Rh(1)	126.45(13)
C(16)-Si(2)-Rh(1)	98.78(10)
C(30)-Si(3)-C(31)	106.01(17)
C(30)-Si(3)-C(32)	105.04(14)
C(31)-Si(3)-C(32)	108.56(14)
C(30)-Si(3)-Rh(2)	106.96(11)
C(31)-Si(3)-Rh(2)	116.44(11)
C(32)-Si(3)-Rh(2)	112.97(9)
C(40)-Si(4)-C(39)	104.01(16)
C(40)-Si(4)-C(29)	111.26(16)
C(39)-Si(4)-C(29)	104.90(15)
C(40)-Si(4)-Rh(2)	109.45(12)
C(39)-Si(4)-Rh(2)	124.99(11)
C(29)-Si(4)-Rh(2)	101.99(10)
O(2)-Si(5)-C(49)	109.09(18)
O(2) - Si(5) - C(50)	106.59(17)
C(49)-Si(5)-C(50)	108.5(2)
O(2)-Si(5)-C(24)	105.11(12)
C(49) - Si(5) - C(24)	111.05(16)
C(50)-Si(5)-C(24)	116.23(16)
O(2) - Si(6) - C(23)	110.65(17)
O(2) - Si(6) - C(22)	105.69(16)
C(23) - Si(6) - C(22)	108.63(18)
O(2) - Si(6) - C(21)	105.82(12)
C(23) - Si(6) - C(21)	111.33(14)
C(22) - Si(6) - C(21)	114.53(14)
C(1) - P(1) - C(10)	103.19(13)
C(1) - P(1) - C(19)	102.40(13)
C(10) - P(1) - C(19)	102.28(12)
	, /

C(1)-P(1)-Rh(1)	118.91(9)
C(10)-P(1)-Rh(1)	119.09(9)
C(19)-P(1)-Rh(1)	108.58(9)
C(34) - P(2) - C(27)	101.44(13)
C(34)-P(2)-C(26)	103.83(13)
C(27)-P(2)-C(26)	103.02(13)
C(34)-P(2)-Rh(2)	116.40(9)
C(27)-P(2)-Rh(2)	119.45(9)
C(26)-P(2)-Rh(2)	110.79(9)
Rh(1)-Cl(1)-Rh(2)	96.49(2)
Rh(2)-Cl(2)-Rh(1)	97.08(2)
P(1)-Rh(1)-Si(2)	89.26(3)
P(1)-Rh(1)-Si(1)	91.36(3)
Si(2)-Rh(1)-Si(1)	88.37(4)
P(1)-Rh(1)-Cl(1)	170.66(3)
Si(2)-Rh(1)-Cl(1)	100.08(3)
Si(1)-Rh(1)-Cl(1)	88.69(3)
P(1)-Rh(1)-Cl(2)	97.29(2)
Si(2)-Rh(1)-Cl(2)	104.33(3)
Si(1)-Rh(1)-Cl(2)	164.66(3)
Cl(1)-Rh(1)-Cl(2)	80.73(2)
P(2)-Rh(2)-Si(4)	89.62(3)
P(2)-Rh(2)-Si(3)	90.07(3)
Si(4)-Rh(2)-Si(3)	92.06(3)
P(2)-Rh(2)-Cl(2)	171.71(3)
Si(4)-Rh(2)-Cl(2)	98.36(3)
Si(3)-Rh(2)-Cl(2)	87.43(3)
P(2)-Rh(2)-Cl(1)	100.54(2)
Si(4)-Rh(2)-Cl(1)	96.26(3)
Si(3)-Rh(2)-Cl(1)	166.52(3)
Cl(2)-Rh(2)-Cl(1)	80.90(2)
C(58)-O(1)-C(56)	113.3(3)
Si(5)-O(2)-Si(6)	159.01(18)

4. Characterization of compound **4Rh**

4.1 Solid state ¹H NMR

Figure S 33. ¹H NMR (CP MAS, Vr=16 kHz) of complex 4Rh.

4.2 Solid state ¹³C NMR

Figure S 34. ¹³C (CP MAS, Vr=16 kHz) NMR spectrum of complex 4Rh.

4.3 Solid state ³¹P NMR

Figure S 35. ³¹P (CP MAS, Vr=16 kHz) NMR spectrum of complex 4Rh.

4.4 Solid state ²⁹Si NMR

Figure S 36. ²⁹Si (CP MAS, Vr=16 kHz) NMR spectrum of complex 4Rh.

4.5 FT-IR

Figure S 37. FT- IR (KBr) of compound 4Rh.

4.6 X-Ray Diffraction structure and tables

Figure S 38. ORTEP drawing of complex **4Rh** with thermal ellipsoids at 50% probability- Hydrogen atoms as well as methyl groups on silicon were omitted for clarity.

Table	S4 - Bond for:	Distances (Ang. mm69 P1	strom) 21/c 1	R = 0.03	
Rh1	-C11	2.4160(5)	C15	-C16	1.395(3)
Rh1	-P1	2.2075(5)	C15	-C20	1.393(3)
Rh1	-Sil	2.2824(8)	C16	-C17	1.392(3)
Rh1	-Si2	2.2959(7)	C17	-C18	1.392(3)
Rh1	-Cl1_a	2.5591(6)	C18	-C19	1.382(3)
P1	-C1	1.822(2)	C19	-C20	1.386(3)
P1	-C8	1.823(2)	COAA	-HOAA	0.9600
P1	-C15	1.829(2)	COAA	-HOAB	0.9600
Si1	-COAA	1.882(3)	COAA	-H0AC	0.9600
Si1	-C7	1.912(3)	C2	-H2	0.9300
Si1	-C21	1.875(2)	C3	-НЗ	0.9300
Si2	-C14	1.903(2)	C4	-H4	0.9300
Si2	-C22	1.881(3)	C5	-Н5	0.9300
Si2	-C23	1.892(2)	C7	-Н7А	0.9700
C1	-C2	1.395(3)	C7	-H7B	0.9700
C1	-C6	1.410(3)	С9	-Н9	0.9300
C2	-C3	1.393(3)	C10	-H10	0.9300
C3	-C4	1.385(4)	C11	-H11	0.9300
C4	-C5	1.387(4)	C12	-H12	0.9300
C5	-C6	1.399(3)	C14	-H14A	0.9700
C6	-C7	1.498(3)	C14	-H14B	0.9700
C8	-C9	1.404(3)	C16	-H16	0.9300
C8	-C13	1.407(3)	C17	-H17	0.9300
С9	-C10	1.391(3)	C18	-H18	0.9300
C10	-C11	1.391(3)	C19	-H19	0.9300
C11	-C12	1.383(3)	C20	-H20	0.9300
C12	-C13	1.403(3)	C21	-H21A	0.9600
C13	-C14	1.495(3)	C21	-H21B	0.9600
C21	-H21C	0.9600	C26	-C27	1.374(4)
C22	-H22A	0.9600	C27	-C28	1.383(3)
C22	-H22B	0.9600	C28	-C29	1.382(4)
C22	-H22C	0.9600	C24	-H24	0.9300
C23	-H23A	0.9600	C25	-H25	0.9300

	C23	3 -н23в		0.9600		C26 -		-H	-H26		0.9300		
	C23	-H23C		0	.9600	C2	C27 -		H27		0.9300		
	C24 -C25		1.3	1.377(4)		C28 -		-H28		0.9300			
	C24 -C29		1.3	1.389(4)		C29 -		129		0.9300			
	C25	-C2	6	1.3	82(4)								
Table S5 - Bond Angles for: mm69		d Angles mm69	P	(Degrees) 1 21/c 1	R =		= 0.03						
Cl1	-Rh	1	-P1		173.42(3)		C22		-Si2	-C23	3	10	7.53(11)
C11	-Rh	1	-Sil		100.12(2)		P1		-C1	-C2		12	1.49(17)
C11	-Rh	1	-Si2		88.71(2)		P1		-C1	-C6		11	7.73(17)
C11	-Rh	1	-Cl1_a		83.92(2)		C2		-C1	-C6			120.4(2)
P1	-Rh	1	-Sil		86.37(2)		C1		-C2	-C3			120.8(2)
P1	-Rh	1	-Si2		89.41(2)		C2		-C3	-C4			119.2(2)
C11_	a -Rh	1	-P1		95.37(2)		C3		-C4	-C5			120.4(2)
Si1	-Rh	1	-Si2		96.92(3)		C4		-C5	-C6			121.7(2)
C11_	a -Rh	1	-Sil		106.44(2)		C1		-C6	-C5			117.6(2)
C11_	a -Rh	1	-Si2		156.39(3)		C1		-C6	-C7			121.5(2)
Rh1	-Cl	1	-Rh1_a		96.08(2)		C5		-C6	-C7			120.9(2)
Rh1	- P1		-C1		109.31(7)		Si1		-C7	-C6		12	1.20(16)
Rh1	- P1		-C8		121.22(7)		P1		-C8	-C9		12	0.43(16)
Rh1	- P1		-C15		111.20(7)		P1		-C8	-C13	3	11	9.50(16)
C1	-P1		-C8	1	05.68(10)		С9		-C8	-C13	3	12	0.07(19)
C1	-P1		-C15	1	05.45(10)		C8		-C9	-C10)		120.8(2)
C8	-P1		-C15		102.75(9)		С9		-C10	-C11	L		119.3(2)
Rh1	-Si	1	-COAA	1	22.43(11)		C10		-C11	-C12	2		120.1(2)
Rh1	-Si	1	-C7		111.22(7)		C11		-C12	-C13	3		121.8(2)
Rh1	-Si	1	-C21		106.91(9)		C8		-C13	-C12	2		117.8(2)
COAA	-Si	1	-C7	1	02.42(13)		C8		-C13	-C14	1	12	1.30(19)
COAA	-Si	1	-C21	1	06.62(14)		C12		-C13	-C14	1		120.7(2)
C7 Rh1	-Si -S	1 i2	-C21 -C14	1	06.16(11) 114.55(7))	Si2 Pl		-C14 -C15	-C13 -C1	3 16	12 1	0.41(15) 18.89(16)
Rh1	-Si	2	-C22		119.29(8)		P1		-C15	-C20)	12	1.78(16)
Rh1	-Si	2	-C23		101.74(8)		C16		-C15	-C20)	11	9.33(19)
C14	-Si	2	-C22	1	09.16(10)		C15		-C16	-C17	7		120.2(2)
C14	-Si	2	-C23	1	02.67(10)		C16		-C17	-C18	3		119.9(2)

C17	-C18	-C19	119.9(2)	C11	-C12	-H12	119.00
C18	-C19	-C20	120.4(2)	C13	-C12	-H12	119.00
C15	-C20	-C19	120.2(2)	Si2	-C14	-H14A	107.00
Si1	-COAA	-HOAA	110.00	Si2	-C14	-H14B	107.00
Sil	-COAA	-HOAB	109.00	C13	-C14	-H14A	107.00
Sil	-COAA	-HOAC	109.00	C13	-C14	-H14B	107.00
HOAA	-COAA	-HOAB	110.00	H14A	-C14	-H14B	107.00
HOAA	-COAA	-HOAC	109.00	C15	-C16	-H16	120.00
HOAB	-COAA	-HOAC	109.00	C17	-C16	-H16	120.00
C1	-C2	-H2	120.00	C16	-C17	-H17	120.00
C3	-C2	-H2	120.00	C18	-C17	-H17	120.00
C2	-C3	-НЗ	120.00	C17	-C18	-H18	120.00
C4	-C3	-НЗ	120.00	C19	-C18	-H18	120.00
C3	-C4	-H4	120.00	C18	-C19	-H19	120.00
C5	-C4	-H4	120.00	C20	-C19	-H19	120.00
C4	-C5	-Н5	119.00	C15	-C20	-H20	120.00
C6	-C5	-Н5	119.00	C19	-C20	-H20	120.00
Si1	-C7	-H7A	107.00	Si1	-C21	-H21A	109.00
Si1	-C7	-Н7В	107.00	Si1	-C21	-H21B	109.00
C6	-C7	-H7A	107.00	Si1	-C21	-H21C	110.00
C6	-C7	-Н7В	107.00	H21A	-C21	-H21B	109.00
H7A	-C7	-Н7В	107.00	H21A	-C21	-H21C	110.00
C8	-C9	-Н9	120.00	H21B	-C21	-H21C	109.00
C10	-C9	-Н9	120.00	Si2	-C22	-H22A	110.00
С9	-C10	-H10	120.00	Si2	-C22	-H22B	109.00
C11	-C10	-H10	120.00	Si2	-C22	-H22C	110.00
C10	-C11	-H11	120.00	H22A	-C22	-H22B	109.00
C12	-C11	-H11	120.00	H22A	-C22	-H22C	109.00

Table S5 - Bond Angles for: mm69		(Degrees) (continued) P 1 21/c 1 R = 0.03					
H22B	-C22	-H22C	109.00	C25	-C24	-H24	120.00
Si2	-C23	-H23A	109.00	C29	-C24	-H24	120.00
Si2	-C23	-H23B	109.00	C24	-C25	-H25	120.00
Si2	-C23	-H23C	109.00	C26	-C25	-H25	120.00
H23A	-C23	-H23B	109.00	C25	-C26	-H26	120.00
H23A	-C23	-H23C	109.00	C27	-C26	-H26	120.00
H23B	-C23	-H23C	109.00	C26	-C27	-H27	120.00
C25	-C24	-C29	120.3(2)	C28	-C27	-H27	120.00
C24	-C25	-C26	119.7(2)	C27	-C28	-H28	120.00
C25	-C26	-C27	120.1(2)	C29	-C28	-H28	120.00
C26	-C27	-C28	120.6(2)	C24	-C29	-H29	120.00
C27	-C28	-C29	119.5(2)	C28	-C29	-H29	120.00
C24	-C29	-C28	119.9(2)				

Translation of Symmetry Code to Equiv.Pos

a =[3667.00]	=	[3_667]	=1-x,1-y,2-z
b =[3667.00]	=	[3_667]	=1-x,1-y,2-z
c =[3567.00]	=	[3 567]	=-x,1-y,2-z
d =[2556.00]	=	[2 556]	=-x,1/2+y,3/2-z
e =[3666.00]	=	[3 666]	=1-x,1-y,1-z
f =[4554.00]	=	[4_565]	=x,1/2-y,-1/2+z
g =[4565.00]	=	[4 576]	=x,3/2-y,1/2+z
h =[1455.00]	=	[1 455]	=-1+x,y,z
i =[3567.00]	=	[3 567]	=-x,1-y,2-z
j =[3566.00]	=	[3 566]	=-x,1-y,1-z
k =[4564.00]	=	[4 575]	=x,3/2-y,-1/2+z
1 =[1655.00]	=	[1 655]	=1+x,y,z
m =[2546.00]	=	[2 546]	=-x, -1/2+y, 3/2-z
n =[3566.00]	=	[3 566]	=-x,1-y,1-z
0 = [4555.00]	=	[4_566]	=x,1/2-y,1/2+z

5. Characterization of compound **5Rh**

5.1¹H NMR

Figure S 39. Partial ¹H (500 MHz, C₆D₆) NMR spectrum of complex 5Rh. *Residual toluene

Figure S 40. COSY $^{1}H^{-1}H {^{31}P}(500 \text{ MHz}, C_6D_6)$ of complex 5Rh. * Residual toluene

5.2 ¹³C NMR

Figure S 41. Room temperature ¹³C{¹H} (125.76 MHz, C₆D₆) NMR spectrum of complex 5Rh.

Figure S 42. Partial region of the ${}^{13}C{}^{1}H$ (125.72 MHz, C₆D₆) NMR spectrum of complex 5Rh at room temperature.

Figure S 43. ${}^{31}P{}^{1}H$ } NMR spectrum (202.40 MHz, C₆D₆) at room temperature of complex 5Rh.

5.4²⁹Si NMR

Figure S 44. ²⁹Si{¹H} (99.36 MHz, C₆D₆) NMR spectrum of complex **5Rh**.

Figure S 45. HMBC $^{29}Si^{-1}H\{^{31}P\}$ (500 MHz-99.36 MHz, $C_6D_6)$ of complex 5Rh.

Figure S 46. FT-IR spectrum (ATR) of complex 5Rh.

5.6 X-Ray Diffraction structure and tables

Figure S 47. ORTEP diagram of complex 5Rh with thermal ellipsoids at 50% probability. Hydrogen atoms are omitted for clarity.

Tables for complex 5Rh

Table S6 - Bond Distances (Angstrom) for: mm75 C 1 2/c 1 R = 0.03

Rh1 -Cl1	2.4579(8)	C15 -C1	6 1.395(3)
Rh1 -P1	2.3478(5)	C16 -C17	7 1.387(3)
Rh1 -Si1	2.3415(6)	C17 -C18	3 1.391(3)
Rh1 -P1	_a 2.3478(5)	C18 -C1	9 1.392(3)
Rh1 -Si1	_a 2.3415(6)	C2AA -I	H2AA 0.9300
P1 -C0A	AA 1.820(2)	C1AA -I	H1AA 0.9300
P1 -C8	1.847(2)	C4 -H4	0.9300
P1 -C14	1.839(2)	С5 -Н5	0.9300
Si1 -C7	1.915(2)	C7 -H7A	0.9700
Si1 -C20	1.888(2)	C7 -H7B	0.9700
Si1 -C21	1.889(2)	С9 -Н9	0.9300
O1 -C22	2 1.426(3)	C10 -H10	0.9300
O1 -C25	5 1.436(3)	C11 -H11	0.9300
COAA -C	2AA 1.398	(3) C12 -	H12 0.9300
COAA -C	1.417(3)	С13 -Н	13 0.9300
C2AA -C	CIAA 1.392	(3) C15 -	H15 0.9300
C1AA -C	1.393(3)	С16 -Н	16 0.9300
C4 -C5	1.384(4)	C17 -H17	0.9300
C5 -C6	1.399(3)	C18 -H18	0.9300
C6 -C7	1.497(3)	C19 -H19	0.9300
C8 -C9	1.395(3)	C20 -H20	B 0.9600
C8 -C13	3 1.407(3)	C20 -H20	OC 0.9600
C9 -C10) 1.393(3)	C20 -H20	A 0.9600
C10 -C1	1 1.392(3)	C21 -H2	1C 0.9600
C11 -C1	2 1.382(3)	C21 -H2	1A 0.9600
C12 -C1	3 1.386(3)	C21 -H2	1B 0.9600
C14 -C1	9 1.406(3)	O2 -C26	5 1.443(7)

Table S6 - Bond Distances (Angstrom) (continued) for: mm75 \quad C 1 2/c 1 \quad R = 0.03 \quad

C22	-C23	1.513(4)	C26	-C27	1.372(8)
C23	-C24	1.519(4)	C27	-C28	1.559(8)
C24	-C25	1.534(4)	C28	-C29	1.342(9)
C22	-H22A	0.9700	C26	-H26A	0.9700
C22	-H22B	0.9700	C26	-H26B	0.9700
C23	-H23B	0.9700	C27	-H27A	0.9700
C23	-H23A	0.9700	C27	-H27B	0.9700
C24	-H24A	0.9700	C28	-H28A	0.9700
C24	-H24B	0.9700	C28	-H28B	0.9700
C25	-H25B	0.9700	C29	-H29A	0.9700
C25	-H25A	0.9700	C29	-H29B	0.9700

Table S7 - Bond Angles (Degrees) for: mm75 C 1 2/c 1 R = 0.03

Cl1	-Rh1	-P1	87.96(2) C1AA -C4 -C5 119.9(2)
C11	-Rh1	-Si1	137.62(2) C4 -C5 -C6 122.1(2)
C11	-Rh1	-P1_a	87.96(2) COAA -C6 -C5 117.8(2)
C11	-Rh1	-Si1_a	137.62(2) COAA -C6 -C7 121.27(18)
P1	-Rh1	-Si1	87.82(2) C5 -C6 -C7 121.0(2)
P1	-Rh1	-P1_a	175.93(2) Si1 -C7 -C6 119.50(15)
P1	-Rh1	-Si1_a	95.19(2) P1 -C8 -C13 120.26(16)
P1_a	-Rh1	-Si1	95.19(2) C9 -C8 -C13 118.9(2)
Si1	-Rh1	-Si1_a	84.76(2) P1 -C8 -C9 120.86(16)
P1_a	-Rh1	-Si1_a	87.82(2) C8 -C9 -C10 120.3(2)
Rh1	-P1	-C0AA	115.51(7) C9 -C10 -C11 120.1(2)
Rh1	-P1	-C8	113.94(7) C10 -C11 -C12 120.2(2)
Rh1	-P1	-C14	117.63(7) C11 -C12 -C13 120.1(2)
C0A	A -P1	-C8	101.67(9) C8 -C13 -C12 120.6(2)
C0A	A -P1	-C14	104.16(9) P1 -C14 -C19 120.20(16)
C8	-P1	-C14	101.83(9) C15 -C14 -C19 118.65(19)
Rh1	-Si1	-C7	112.52(7) P1 -C14 -C15 121.16(16)
Rh1	-Si1	-C20	104.29(8) C14 -C15 -C16 120.42(19)
Rh1	-Si1	-C21	127.45(8) C15 -C16 -C17 120.1(2)

 C7
 -Si1
 -C20
 101.69(11)
 C16
 -C17
 -C18
 120.5(2)

 C7
 -Si1
 -C21
 104.51(10)
 C17
 -C18
 -C19
 119.4(2)

 C20
 -Si1
 -C21
 103.14(11)
 C14
 -C19
 -C18
 121.0(2)

 C22
 -O1
 -C25
 107.14(19)
 C1AA
 -C2AA
 -H2AA
 119.00

 P1
 -C0AA
 -C2AA
 122.92(16)
 C0AA
 -C2AA
 -H2AA
 119.00

 P1
 -C0AA
 -C6
 117.15(16)
 C2AA
 -C1AA
 -H1AA
 120.00

 C2AA
 -C0AA
 -C6
 119.83(19)
 C4
 -C1AA
 -H1AA
 120.00

 C0AA
 -C2AA
 -C1AA
 121.1(2)
 C5
 -C4
 -H4
 120.00

 C2AA
 -C1AA
 -C1AA
 120.00
 C1AA
 -C4
 -H4
 120.00

Table S7 - Bond Angles (Degrees) (continued) for: mm75 C 1 2/c 1 R = 0.03

C4	-C5	-H5	119.00 Si1 -C20 -H20B 109.00
C6	-C5	-H5	119.00 H20A -C20 -H20B 110.00
Si1	-C7	-H7B	107.00 H20A -C20 -H20C 109.00
C6	-C7	-H7A	107.00 Si1 -C20 -H20C 110.00
Si1	-C7	-H7A	107.00 H20B -C20 -H20C 109.00
H7A	-C7	-H7B	107.00 Si1 -C21 -H21B 110.00
C6	-C7	-H7B	107.00 Si1 -C21 -H21C 110.00
C8	-C9	-H9	120.00 Si1 -C21 -H21A 110.00
C10	-C9	-H9	120.00 H21A -C21 -H21C 109.00
C11	-C10	-H10	120.00 H21B -C21 -H21C 109.00
C9	-C10	-H10	120.00 H21A -C21 -H21B 109.00
C12	-C11	-H11	120.00 C26 -O2 -C29 108.7(5)
C10	-C11	-H11	120.00 O1 -C22 -C23 105.3(2)
C11	-C12	-H12	120.00 C22 -C23 -C24 101.1(2)
C13	-C12	-H12	120.00 C23 -C24 -C25 104.6(2)
C8	-C13	-H13	120.00 O1 -C25 -C24 106.7(2)
C12	-C13	-H13	120.00 O1 -C22 -H22A 111.00
C16	-C15	-H15	120.00 O1 -C22 -H22B 111.00
C14	-C15	-H15	120.00 C23 -C22 -H22B 111.00
C15	-C16	-H16	120.00 H22A -C22 -H22B 109.00
C17	-C16	-H16	120.00 C23 -C22 -H22A 111.00
C18	-C17	-H17	120.00 C22 -C23 -H23B 112.00
C16	-C17	-H17	120.00 C24 -C23 -H23A 112.00
C17	-C18	-H18	120.00 C24 -C23 -H23B 112.00
C19	-C18	-H18	120.00 H23A -C23 -H23B 109.00
C18	-C19	-H19	120.00 C22 -C23 -H23A 112.00
C14	-C19	-H19	119.00 C23 -C24 -H24B 111.00
Si1	-C20	-H20A	109.00 C25 -C24 -H24A 111.00

Table S7 - Bond Angles (Degrees) (continued) for: mm75 C 1 2/c 1 R = 0.03

C23	-C24	-H24A	111.00 H26A -C26 -H26B	109.00
H24A	• -C24	-H24B	109.00 C26 -C27 -H27A	109.00
C25	-C24	-H24B	111.00 С26 -С27 -Н27В	109.00
01	-C25	-H25A	110.00 C28 -C27 -H27A	109.00
01	-C25	-H25B	110.00 C28 -C27 -H27B	109.00
C24	-C25	-H25B	110.00 H27A -C27 -H27B	108.00
H25A	-C25	-H25B	109.00 C27 -C28 -H28A	111.00
C24	-C25	-H25A	110.00 C27 -C28 -H28B	111.00
02	-C26	-C27	103.5(4) C29 -C28 -H28A	111.00
C26	-C27	-C28	112.5(4) C29 -C28 -H28B	111.00
C27	-C28	-C29	102.8(5) H28A -C28 -H28B	109.00
02	-C29	-C28	110.2(4) O2 -C29 -H29A	110.00
02	-C26	-H26A	111.00 О2 -С29 -Н29В	110.00
02	-C26	-H26B	111.00 C28 -C29 -H29A	110.00
C27	-C26	-H26A	111.00 С28 -С29 -Н29В	110.00
C27	-C26	-H26B	111.00 H29A -C29 -H29B	108.00

6. Characterization of compound **2Ir**

Figure S 48. ¹H NMR spectrum (400 MHz) in C₆D₆ of complex 2lr.
6.2 ¹³C NMR

Figure S 49. ${}^{13}C{}^{1}H$ NMR spectrum (176.008 MHz) in C₆D₆ of complex 2Ir.

6.3 ³¹P NMR

Figure S 50. ³¹P{¹H} NMR spectrum of complex 2lr in C₆D₆.

Figure S 51. ³¹P{¹H]</sup> NMR spectra showing conversion of complex **2lr** (top left) to **3lr** in the presence of adventitious water (top right) and to unknown compounds in very dried solvents.

6.4 ²⁹Si NMR

Figure S 51. HMQC ²⁹Si-¹H{³¹P} (500 MHz-99.36 MHz, C_6D_6) of a mixture of complexes 2Ir and 3Ir.

6.5 FT-IR

Figure S 52. FT-IR spectrum of complex **2Ir** (red) and its comparison with free ligand **1** (black). Inset: hydride region with same colour code.

7 Characterization of compound **3Ir**

7.1 ¹H NMR

Figure S 53. Partial ¹H (400 MHz, C₆D₆) NMR spectrum of complex 3Ir at ambient temperature.

Figure S 54. COSY ¹H–¹H (400 MHz, C₆D₆) NMR spectrum of complex 3Ir.

7.2 ¹³C NMR

Figure S 55. Regions of ¹³C^{{1}H]</sup> NMR spectrum of complex 3Ir and numbering for assignment.

7.3 ³¹P NMR

Figure S 57. ³¹P{¹H} (161.9 MHz, C₆D₆) NMR spectrum of complex 3Ir.

Figure S 58. ³¹P{¹H} NMR spectrum of compound **2Ir** and its gradual conversion to **3Ir** in the presence of water.

Figure S 59. X-ray diffraction structure of compound **3Ir** with thermal ellipsoids at the 50% probability level. Hydrogen atoms were removed for clarity.

Tables for complex 3Ir

C(1)-C(6)	1.390(6)
C(1)-C(2)	1.414(6)
C(1)-P(1)	1.832(4)
C(2)-C(3)	1.402(6)
C(2)-C(19)	1.494(6)
C(3)-C(4)	1.374(8)
C(3)-H(3)	0.9500
C(4)-C(5)	1.376(8)
C(4)-H(4)	0.9500
C(5)-C(6)	1.389(6)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-C(8)	1.385(6)
C(7)-C(12)	1.420(6)
C(7)-P(1)	1.838(4)
C(8)-C(9)	1.389(6)
C(8)-H(8)	0.9500
C(9)-C(10)	1.375(7)
C(9)-H(9)	0.9500
C(10)-C(11)	1.369(8)
C(10)-H(10)	0.9500
C(11)-C(12)	1.389(7)
C(11)-H(11)	0.9500
C(12)-C(21)	1.508(7)
C(13)-C(18)	1.399(5)
C(13)-C(14)	1.415(5)
C(13)-P(1)	1.833(4)
C(14)-C(15)	1.388(6)
C(14)-C(20)	1.498(5)
C(15)-C(16)	1.380(6)
C(15)-H(15)	0.9500
C(16)-C(17)	1.369(6)

Table S8. Bond lengths [Å] and angles $[\circ]$ for vm1_sq.

C(16)-H(16)	0.9500
C(17)-C(18)	1.386(6)
C(17)-H(17)	0.9500
C(18)-H(18)	0.9500
C(19)-Si(1)	1.893(5)
C(19)-H(19A)	0.8383
C(19)-H(19B)	0.8638
C(20)-Si(2)	1.903(4)
C(20)-H(20A)	0.9900
C(20)-H(20B)	0.9900
C(21)-Si(3P)	1.894(7)
C(21)-Si(3)	1.915(7)
C(21)-H(21A)	1.1075
C(21)-H(21B)	1.0215
C(22)-Si(1)	1.884(6)
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-Si(1)	1.885(5)
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
C(24)-Si(2)	1.886(4)
C(24)-H(24A)	0.9800
C(24)-H(24B)	0.9800
C(24)-H(24C)	0.9800
C(25)-Si(2)	1.862(5)
C(25)-H(25A)	0.9800
C(25)-H(25B)	0.9800
C(25)-H(25C)	0.9800
C(28)-C(33)	1.383(7)
C(28)-C(29)	1.405(7)
C(28)-P(2)	1.845(5)
C(29)-C(30)	1.406(8)
C(29)-C(46)	1.494(8)
C(30)-C(31)	1.388(10)

C(30)-H(30)	0.9500
C(31)-C(32)	1.347(10)
C(31)-H(31)	0.9500
C(32)-C(33)	1.383(8)
C(32)-H(32)	0.9500
C(33)-H(33)	0.9500
C(34)-C(39)	1.405(6)
C(34)-C(35)	1.407(6)
C(34)-P(2)	1.832(4)
C(35)-C(36)	1.393(6)
C(35)-C(47)	1.498(6)
C(36)-C(37)	1.385(7)
C(36)-H(36)	0.9500
C(37)-C(38)	1.373(8)
C(37)-H(37)	0.9500
C(38)-C(39)	1.379(7)
C(38)-H(38)	0.9500
C(39)-H(39)	0.9500
C(40)-C(45)	1.395(6)
C(40)-C(41)	1.410(7)
C(40)-P(2)	1.832(4)
C(41)-C(42)	1.408(7)
C(41)-C(48)	1.502(7)
C(42)-C(43)	1.378(9)
C(42)-H(42)	0.9500
C(43)-C(44)	1.369(10)
C(43)-H(43)	0.9500
C(44)-C(45)	1.388(7)
C(44)-H(44)	0.9500
C(45)-H(45)	0.9500
C(46)-Si(4P)	1.786(7)
C(46)-Si(4)	2.032(7)
C(46)-H(46A)	1.0078
C(46)-H(46B)	1.0227
C(47)-Si(5)	1.900(4)
C(47)-H(47A)	0.9804

C(47)-H(47B)	0.9628
C(48)-Si(6)	1.898(6)
C(48)-H(48A)	0.9900
C(48)-H(48B)	0.9900
Si(3)-O(1)	1.733(8)
Si(3)-C(27)	1.81(2)
Si(3)-C(26)	1.833(18)
Si(4)-O(1)	1.533(7)
Si(4)-C(50)	1.772(19)
Si(4)-C(49)	1.83(2)
C(26)-H(26A)	0.9800
C(26)-H(26B)	0.9800
C(26)-H(26C)	0.9800
C(27)-H(27A)	0.9800
C(27)-H(27B)	0.9800
C(27)-H(27C)	0.9800
C(49)-H(49A)	0.9800
C(49)-H(49B)	0.9800
C(49)-H(49C)	0.9800
C(50)-H(50A)	0.9800
C(50)-H(50B)	0.9800
C(50)-H(50C)	0.9800
Si(3P)-O(1)	1.503(7)
Si(3P)-C(26P)	1.756(18)
Si(3P)-C(27P)	1.96(2)
Si(4P)-O(1)	1.714(7)
Si(4P)-C(49P)	1.831(17)
Si(4P)-C(50P)	1.836(19)
C(26P)-H(26D)	0.9800
C(26P)-H(26E)	0.9800
C(26P)-H(26F)	0.9800
C(27P)-H(27D)	0.9800
C(27P)-H(27E)	0.9800
C(27P)-H(27F)	0.9800
C(49P)-H(49D)	0.9800
C(49P)-H(49E)	0.9800

C(49P)-H(49F)	0.9800
C(50P)-H(50D)	0.9800
C(50P)-H(50E)	0.9800
C(50P)-H(50F)	0.9800
C(51)-Si(5)	1.883(5)
C(51)-H(51A)	0.9800
C(51)-H(51B)	0.9800
C(51)-H(51C)	0.9800
C(52)-Si(5)	1.884(5)
C(52)-H(52A)	0.9800
C(52)-H(52B)	0.9800
C(52)-H(52C)	0.9800
C(53)-Si(6)	1.880(6)
C(53)-H(53A)	0.9800
C(53)-H(53B)	0.9800
C(53)-H(53C)	0.9800
C(54)-Si(6)	1.874(5)
C(54)-H(54A)	0.9800
C(54)-H(54B)	0.9800
C(54)-H(54C)	0.9800
Cl(1)-Ir(2)	2.3839(9)
Cl(1)-Ir(1)	2.5958(9)
Cl(2)-Ir(1)	2.3937(10)
Cl(2)-Ir(2)	2.5801(10)
Ir(1)-P(1)	2.2228(10)
Ir(1)-Si(2)	2.2963(12)
Ir(1)-Si(1)	2.3110(12)
Ir(2)-P(2)	2.2300(10)
Ir(2)-Si(6)	2.2935(13)
Ir(2)-Si(5)	2.3145(13)
C(6)-C(1)-C(2)	119 7(4)
C(6)-C(1)-P(1)	119.3(3)
C(2)-C(1)-P(1)	121.0(3)
C(3)-C(2)-C(1)	117.5(4)
C(3)-C(2)-C(19)	120.0(4)
$\langle \cdot \rangle = \langle \cdot \rangle = \langle - \rangle $	-=(-)

C(1)-C(2)-C(19)	122.5(4)
C(4)-C(3)-C(2)	122.1(5)
C(4)-C(3)-H(3)	119.0
C(2)-C(3)-H(3)	119.0
C(3)-C(4)-C(5)	120.0(5)
C(3)-C(4)-H(4)	120.0
C(5)-C(4)-H(4)	120.0
C(4)-C(5)-C(6)	119.6(5)
C(4)-C(5)-H(5)	120.2
C(6)-C(5)-H(5)	120.2
C(5)-C(6)-C(1)	121.1(5)
C(5)-C(6)-H(6)	119.4
C(1)-C(6)-H(6)	119.4
C(8)-C(7)-C(12)	118.4(4)
C(8)-C(7)-P(1)	120.0(3)
C(12)-C(7)-P(1)	121.4(3)
C(7)-C(8)-C(9)	122.3(4)
C(7)-C(8)-H(8)	118.9
C(9)-C(8)-H(8)	118.9
C(10)-C(9)-C(8)	119.0(5)
C(10)-C(9)-H(9)	120.5
C(8)-C(9)-H(9)	120.5
C(11)-C(10)-C(9)	119.6(4)
C(11)-C(10)-H(10)	120.2
C(9)-C(10)-H(10)	120.2
C(10)-C(11)-C(12)	122.9(4)
C(10)-C(11)-H(11)	118.6
C(12)-C(11)-H(11)	118.6
C(11)-C(12)-C(7)	117.8(4)
C(11)-C(12)-C(21)	119.2(4)
C(7)-C(12)-C(21)	122.9(4)
C(18)-C(13)-C(14)	119.0(4)
C(18)-C(13)-P(1)	119.0(3)
C(14)-C(13)-P(1)	121.9(3)
C(15)-C(14)-C(13)	117.6(4)
C(15)-C(14)-C(20)	119.2(4)

C(13)-C(14)-C(20)	123.0(4)
C(16)-C(15)-C(14)	122.4(4)
C(16)-C(15)-H(15)	118.8
C(14)-C(15)-H(15)	118.8
C(17)-C(16)-C(15)	120.3(4)
C(17)-C(16)-H(16)	119.9
C(15)-C(16)-H(16)	119.9
C(16)-C(17)-C(18)	119.0(4)
C(16)-C(17)-H(17)	120.5
C(18)-C(17)-H(17)	120.5
C(17)-C(18)-C(13)	121.7(4)
C(17)-C(18)-H(18)	119.2
C(13)-C(18)-H(18)	119.2
C(2)-C(19)-Si(1)	112.4(3)
C(2)-C(19)-H(19A)	113.8
Si(1)-C(19)-H(19A)	114.9
C(2)-C(19)-H(19B)	109.0
Si(1)-C(19)-H(19B)	111.1
H(19A)-C(19)-H(19B)	94.2
C(14)-C(20)-Si(2)	108.2(3)
C(14)-C(20)-H(20A)	110.1
Si(2)-C(20)-H(20A)	110.1
C(14)-C(20)-H(20B)	110.1
Si(2)-C(20)-H(20B)	110.1
H(20A)-C(20)-H(20B)	108.4
C(12)-C(21)-Si(3P)	126.9(4)
C(12)-C(21)-Si(3)	115.0(4)
C(12)-C(21)-H(21A)	118.3
Si(3P)-C(21)-H(21A)	97.5
Si(3)-C(21)-H(21A)	115.2
C(12)-C(21)-H(21B)	111.6
Si(3P)-C(21)-H(21B)	105.7
Si(3)-C(21)-H(21B)	102.1
H(21A)-C(21)-H(21B)	90.3
Si(1)-C(22)-H(22A)	109.5
Si(1)-C(22)-H(22B)	109.5

H(22A)-C(22)-H(22B)	109.5
Si(1)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
Si(1)-C(23)-H(23A)	109.5
Si(1)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
Si(1)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
Si(2)-C(24)-H(24A)	109.5
Si(2)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
Si(2)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
Si(2)-C(25)-H(25A)	109.5
Si(2)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
Si(2)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(33)-C(28)-C(29)	120.1(5)
C(33)-C(28)-P(2)	119.0(4)
C(29)-C(28)-P(2)	120.9(4)
C(28)-C(29)-C(30)	117.1(5)
C(28)-C(29)-C(46)	124.2(5)
C(30)-C(29)-C(46)	118.5(5)
C(31)-C(30)-C(29)	121.4(6)
C(31)-C(30)-H(30)	119.3
C(29)-C(30)-H(30)	119.3
C(32)-C(31)-C(30)	120.3(6)
C(32)-C(31)-H(31)	119.8
C(30)-C(31)-H(31)	119.8
C(31)-C(32)-C(33)	120.0(6)
C(31)-C(32)-H(32)	120.0

C(33)-C(32)-H(32)	120.0
C(32)-C(33)-C(28)	121.1(6)
C(32)-C(33)-H(33)	119.5
C(28)-C(33)-H(33)	119.5
C(39)-C(34)-C(35)	119.3(4)
C(39)-C(34)-P(2)	119.3(4)
C(35)-C(34)-P(2)	121.4(3)
C(36)-C(35)-C(34)	118.2(4)
C(36)-C(35)-C(47)	118.9(4)
C(34)-C(35)-C(47)	122.9(4)
C(37)-C(36)-C(35)	121.6(5)
C(37)-C(36)-H(36)	119.2
C(35)-C(36)-H(36)	119.2
C(38)-C(37)-C(36)	120.1(5)
C(38)-C(37)-H(37)	119.9
C(36)-C(37)-H(37)	119.9
C(37)-C(38)-C(39)	119.7(5)
C(37)-C(38)-H(38)	120.2
C(39)-C(38)-H(38)	120.2
C(38)-C(39)-C(34)	121.1(5)
C(38)-C(39)-H(39)	119.5
C(34)-C(39)-H(39)	119.5
C(45)-C(40)-C(41)	120.2(4)
C(45)-C(40)-P(2)	118.5(4)
C(41)-C(40)-P(2)	121.3(3)
C(42)-C(41)-C(40)	116.6(5)
C(42)-C(41)-C(48)	119.8(5)
C(40)-C(41)-C(48)	123.4(4)
C(43)-C(42)-C(41)	122.2(6)
C(43)-C(42)-H(42)	118.9
C(41)-C(42)-H(42)	118.9
C(44)-C(43)-C(42)	120.6(6)
C(44)-C(43)-H(43)	119.7
C(42)-C(43)-H(43)	119.7
C(43)-C(44)-C(45)	119.0(5)
C(43)-C(44)-H(44)	120.5

C(45)-C(44)-H(44)	120.5
C(44)-C(45)-C(40)	121.4(5)
C(44)-C(45)-H(45)	119.3
C(40)-C(45)-H(45)	119.3
C(29)-C(46)-Si(4P)	117.1(4)
C(29)-C(46)-Si(4)	127.4(4)
C(29)-C(46)-H(46A)	106.7
Si(4P)-C(46)-H(46A)	98.3
Si(4)-C(46)-H(46A)	105.0
C(29)-C(46)-H(46B)	116.9
Si(4P)-C(46)-H(46B)	108.0
Si(4)-C(46)-H(46B)	91.1
H(46A)-C(46)-H(46B)	108.0
C(35)-C(47)-Si(5)	112.1(3)
C(35)-C(47)-H(47A)	123.5
Si(5)-C(47)-H(47A)	95.7
C(35)-C(47)-H(47B)	120.1
Si(5)-C(47)-H(47B)	92.5
H(47A)-C(47)-H(47B)	105.9
C(41)-C(48)-Si(6)	108.0(4)
C(41)-C(48)-H(48A)	110.1
Si(6)-C(48)-H(48A)	110.1
C(41)-C(48)-H(48B)	110.1
Si(6)-C(48)-H(48B)	110.1
H(48A)-C(48)-H(48B)	108.4
O(1)-Si(3)-C(27)	106.7(7)
O(1)-Si(3)-C(26)	110.4(7)
C(27)-Si(3)-C(26)	109.1(9)
O(1)-Si(3)-C(21)	99.4(3)
C(27)-Si(3)-C(21)	121.2(6)
C(26)-Si(3)-C(21)	109.4(6)
O(1)-Si(4)-C(50)	107.7(7)
O(1)-Si(4)-C(49)	110.9(7)
C(50)-Si(4)-C(49)	107.1(9)
O(1)-Si(4)-C(46)	103.2(3)
C(50)-Si(4)-C(46)	113.9(7)

C(49)-Si(4)-C(46)	114.0(6)
Si(3)-C(26)-H(26A)	109.5
Si(3)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
Si(3)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
Si(3)-C(27)-H(27A)	109.5
Si(3)-C(27)-H(27B)	109.5
H(27A)-C(27)-H(27B)	109.5
Si(3)-C(27)-H(27C)	109.5
H(27A)-C(27)-H(27C)	109.5
H(27B)-C(27)-H(27C)	109.5
Si(4)-C(49)-H(49A)	109.5
Si(4)-C(49)-H(49B)	109.5
H(49A)-C(49)-H(49B)	109.5
Si(4)-C(49)-H(49C)	109.5
H(49A)-C(49)-H(49C)	109.5
H(49B)-C(49)-H(49C)	109.5
Si(4)-C(50)-H(50A)	109.5
Si(4)-C(50)-H(50B)	109.5
H(50A)-C(50)-H(50B)	109.5
Si(4)-C(50)-H(50C)	109.5
H(50A)-C(50)-H(50C)	109.5
H(50B)-C(50)-H(50C)	109.5
O(1)-Si(3P)-C(26P)	115.4(8)
O(1)-Si(3P)-C(21)	109.6(4)
C(26P)-Si(3P)-C(21)	114.6(6)
O(1)-Si(3P)-C(27P)	105.7(6)
C(26P)-Si(3P)-C(27P)	103.1(8)
C(21)-Si(3P)-C(27P)	107.5(6)
O(1)-Si(4P)-C(46)	106.8(3)
O(1)-Si(4P)-C(49P)	106.3(7)
C(46)-Si(4P)-C(49P)	109.1(6)
O(1)-Si(4P)-C(50P)	106.2(6)
C(46)-Si(4P)-C(50P)	121.6(6)

C(49P)-Si(4P)-C(50P)	105.9(8)
Si(3P)-C(26P)-H(26D)	109.5
Si(3P)-C(26P)-H(26E)	109.5
H(26D)-C(26P)-H(26E)	109.5
Si(3P)-C(26P)-H(26F)	109.5
H(26D)-C(26P)-H(26F)	109.5
H(26E)-C(26P)-H(26F)	109.5
Si(3P)-C(27P)-H(27D)	109.5
Si(3P)-C(27P)-H(27E)	109.5
H(27D)-C(27P)-H(27E)	109.5
Si(3P)-C(27P)-H(27F)	109.5
H(27D)-C(27P)-H(27F)	109.5
H(27E)-C(27P)-H(27F)	109.5
Si(4P)-C(49P)-H(49D)	109.5
Si(4P)-C(49P)-H(49E)	109.5
H(49D)-C(49P)-H(49E)	109.5
Si(4P)-C(49P)-H(49F)	109.5
H(49D)-C(49P)-H(49F)	109.5
H(49E)-C(49P)-H(49F)	109.5
Si(4P)-C(50P)-H(50D)	109.5
Si(4P)-C(50P)-H(50E)	109.5
H(50D)-C(50P)-H(50E)	109.5
Si(4P)-C(50P)-H(50F)	109.5
H(50D)-C(50P)-H(50F)	109.5
H(50E)-C(50P)-H(50F)	109.5
Si(5)-C(51)-H(51A)	109.5
Si(5)-C(51)-H(51B)	109.5
H(51A)-C(51)-H(51B)	109.5
Si(5)-C(51)-H(51C)	109.5
H(51A)-C(51)-H(51C)	109.5
H(51B)-C(51)-H(51C)	109.5
Si(5)-C(52)-H(52A)	109.5
Si(5)-C(52)-H(52B)	109.5
H(52A)-C(52)-H(52B)	109.5
Si(5)-C(52)-H(52C)	109.5
H(52A)-C(52)-H(52C)	109.5

H(52B)-C(52)-H(52C)	109.5
Si(6)-C(53)-H(53A)	109.5
Si(6)-C(53)-H(53B)	109.5
H(53A)-C(53)-H(53B)	109.5
Si(6)-C(53)-H(53C)	109.5
H(53A)-C(53)-H(53C)	109.5
H(53B)-C(53)-H(53C)	109.5
Si(6)-C(54)-H(54A)	109.5
Si(6)-C(54)-H(54B)	109.5
H(54A)-C(54)-H(54B)	109.5
Si(6)-C(54)-H(54C)	109.5
H(54A)-C(54)-H(54C)	109.5
H(54B)-C(54)-H(54C)	109.5
Ir(2)-Cl(1)-Ir(1)	97.53(3)
Ir(1)-Cl(2)-Ir(2)	97.70(3)
P(1)-Ir(1)-Si(2)	90.71(4)
P(1)-Ir(1)-Si(1)	90.97(4)
Si(2)-Ir(1)-Si(1)	92.03(5)
P(1)-Ir(1)-Cl(2)	171.67(4)
Si(2)-Ir(1)-Cl(2)	97.21(4)
Si(1)-Ir(1)-Cl(2)	91.35(4)
P(1)-Ir(1)-Cl(1)	96.11(3)
Si(2)-Ir(1)-Cl(1)	98.62(4)
Si(1)-Ir(1)-Cl(1)	167.12(4)
Cl(2)- $Ir(1)$ - $Cl(1)$	80.18(3)
P(2)-Ir(2)-Si(6)	91.09(5)
P(2)-Ir(2)-Si(5)	91.95(4)
Si(6)-Ir(2)-Si(5)	91.23(5)
P(2)- $Ir(2)$ - $Cl(1)$	170.80(4)
Si(6)-Ir(2)-Cl(1)	97.89(4)
Si(5)-Ir(2)-Cl(1)	89.85(4)
P(2)-Ir(2)-Cl(2)	95.60(4)
Si(6)-Ir(2)-Cl(2)	101.72(5)
Si(5)-Ir(2)-Cl(2)	164.84(4)
Cl(1)- $Ir(2)$ - $Cl(2)$	80.68(3)
C(1)-P(1)-C(13)	103.06(18)

C(1)-P(1)-C(7)	103.41(18)
C(13)-P(1)-C(7)	102.65(18)
C(1)-P(1)-Ir(1)	117.90(14)
C(13)-P(1)-Ir(1)	118.82(12)
C(7)-P(1)-Ir(1)	108.97(13)
C(40)-P(2)-C(34)	102.3(2)
C(40)-P(2)-C(28)	103.9(2)
C(34)-P(2)-C(28)	103.2(2)
C(40)-P(2)-Ir(2)	119.33(17)
C(34)-P(2)-Ir(2)	116.97(14)
C(28)-P(2)-Ir(2)	109.35(14)
C(22)-Si(1)-C(23)	105.2(3)
C(22)-Si(1)-C(19)	105.6(3)
C(23)-Si(1)-C(19)	108.5(2)
C(22)-Si(1)-Ir(1)	108.61(19)
C(23)-Si(1)-Ir(1)	115.94(18)
C(19)-Si(1)-Ir(1)	112.33(15)
C(25)-Si(2)-C(24)	103.3(2)
C(25)-Si(2)-C(20)	103.6(2)
C(24)-Si(2)-C(20)	114.1(2)
C(25)-Si(2)-Ir(1)	124.58(17)
C(24)-Si(2)-Ir(1)	110.64(17)
C(20)-Si(2)-Ir(1)	100.73(13)
C(51)-Si(5)-C(52)	104.2(3)
C(51)-Si(5)-C(47)	109.1(2)
C(52)-Si(5)-C(47)	104.8(2)
C(51)-Si(5)-Ir(2)	117.37(19)
C(52)-Si(5)-Ir(2)	108.48(18)
C(47)-Si(5)-Ir(2)	111.80(15)
C(54)-Si(6)-C(53)	102.4(3)
C(54)-Si(6)-C(48)	111.9(3)
C(53)-Si(6)-C(48)	104.4(3)
C(54)-Si(6)-Ir(2)	112.13(18)
C(53)-Si(6)-Ir(2)	124.7(2)
C(48)-Si(6)-Ir(2)	101.12(18)
Si(3P)-O(1)-Si(4P)	157.4(5)

- 8. Spectroscopic characterization of compound **4Ir**
- 8.1 ¹H NMR

Figure S 60. ¹H NMR (MAS, Vr=8 kHz) of complex 4Ir.

Figure S 61. ¹³C (CP MAS, Vr=10 kHz) NMR spectrum of complex 4Ir. (* spinning side bands)

Figure S 62. ³¹P (CP MAS, Vr=10 kHz) NMR spectrum of complex 4Ir. (* spinning side bands)

Figure S 62. ²⁹Si (CP MAS, Vr=10 kHz) NMR spectrum of complex 4Ir.

8.5 FT-IR

Figure S 63. FT-IR spectrum (ATR) of complex 4Ir.