Supporting Information

Aluminum complexes derived from a hexadentate salen-type Schiff base: synthesis, structure, and catalysis for cyclic carbonate synthesis

Ya Xu, Dan Yuan, Yaorong Wang* and Yingming Yao*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123, People's Republic of China.

To whom correspondence should be addressed. Fax: (86)512-65880305; E-mail: yrwang@suda.edu.cn; yaoym@suda.edu.cn.

Table of Contents

- Page S3: Crystallographic data for complexes 1-3
- Page S4: IR data of complexes 2-5.
- Page S5: ¹H NMR spectra of complex **2**.
- Page S5: ¹H NMR spectra of complex **3**.
- Page S6: ¹H NMR spectra of complex **4**.
- Page S6: ¹H NMR spectra of complex **5**.
- Page S7: Characterization and spectra of cyclic carbonate products.

Compound	$4{\times}1{\cdot}C_4H_8O{\cdot}0.5C_6H_{14}$	$2 \times 2 \cdot 7 C_4 H_8 O$	$3 \cdot 2C_4H_8O$
Formula	$C_{187}H_{243}Al_4N_8O_{17}$	$C_{118}H_{170}Al_2N_4O_{15}\\$	$C_{52}H_{71}AlN_2O_6$
Fw	2982.81	1938.54	847.09
<i>T</i> (K)	223(2)	223(2)	223(2)
crystal system	Triclinic,	Triclinic,	Triclinic,
space group	P -1	P -1	P -1
<i>a</i> (Å)	16.3401(8)	23.4700(2)	14.0607(8)
<i>b</i> (Å)	16.3450(7)	14.8888(11)	14.0829(7)
<i>c</i> (Å)	18.5163(8)	33.8790(3)	14.2229(7)
α (deg)	92.953(4)	90	110.791(5)
$\beta(\text{deg})$	111.549(4)	103.819(8)	104.661(5)
γ (deg)	92.257(4)	90	99.320(4)
$V(Å^3)$	4584.5(4)	11496.0(17)	2446.5(2)
Ζ	1	4	2
D_{calcd} (g cm ⁻³)	1.080	1.120	1.150
μ (mm ⁻¹)	0.086	0.087	0.090
F (000)	1609	4208	916
$\theta_{\rm max}$ (deg)	26.37	25.50	26.37
Reflections	49887	26816	23790
collected			
unique reflections	18737	10676	9997
parameters	981	590	496
refined			
final R [I >	R1 = 0.0896,	R1 = 0.1189,	R1 = 0.0875, wR2
2.0o(I)]	wR2 = 0.2430	wR2 = 0.3314	= 0.2400
R indices	R1 = 0.1697,	R1 = 0.1816,	R1 = 0.1349, wR2
(all data)	wR2 = 0.2857	wR2 = 0.3750	= 0.2831
GOF on F ²	1.022	1.184	1.049

Table S1. Crystallographic data for complexes 1-3

IR data of complexes 2-5:

The IR spectra were recorded as KBr pellets on a Nicolet-550 FTIR spectrometer.

IR data of complex **2**: cm⁻¹ 2953 (m), 2905 (w), 2868 (w), 1619(m), 1595 (m), 1555 (w), 1539 (m), 1490 (s), 1461 (s), 1436 (s), 1411 (w), 1389 (m), 1361 (m), 1334 (m), 1305 (w), 1276 (m), 1254 (s), 1202 (m), 1171 (s), 1134 (w), 1109 (w), 1096 (w), 1035 (m), 1022 (m), 984 (w), 911 (w), 894 (w), 877 (s), 848 (s), 808 (w), 783 (w), 768 (m), 752 (m), 731 (m), 693 (w), 670 (w), 646 (w), 612 (m).

IR data of complex **3**: cm⁻¹ 2949 (w), 2902 (w), 2865 (w), 1619(m), 1597 (m), 1555 (w), 1536 (m), 1494 (m), 1461 (m), 1437 (s), 1411 (w), 1389 (w), 1367 (w), 1342 (m), 1275 (m), 1253 (s), 1238 (m), 1202 (w), 1171 (s), 1127 (w), 1109 (m), 1035 (w), 1017 (m), 1001 (w), 911 (w), 899 (w), 877 (m), 847 (s), 813 (w), 789 (w), 765 (s), 748 (m), 733 (s), 688 (m), 667 (w), 644 (w), 613 (s).

IR data of complex **4**: cm⁻¹ 2962 (w), 2946 (w), 1615(m), 1599 (w), 1577 (m), 1554 (w), 1536 (s), 1493 (m), 1478 (w), 1460 (w), 1434 (m), 1407 (w), 1387 (m), 1359 (w), 1324 (w), 1305 (w), 1290 (w), 1277 (w), 1250 (s), 1222 (w), 1203 (w), 1188 (s), 1174 (s), 1134 (w), 1121 (m), 1052 (w), 1029 (m), 985 (w), 929 (w), 879 (w), 844 (w), 820 (w), 787 (w), 775 (w), 756 (s), 672 (s), 639 (w).

IR data of complex **5**: cm⁻¹ 2954 (w), 2903 (w), 2862(w), 1614(s), 1596 (w), 1569 (w), 1558 (w), 1541 (s), 1532 (s), 1496 (m), 1477 (w), 1460 (m), 1436 (m), 1426 (m), 1409 (w), 1388 (w), 1375 (w), 1375 (w), 1360 (w), 1321 (w), 1281 (s), 1250 (m), 1191 (s), 1174 (m), 1119 (w), 1055 (w), 1035 (m), 982 (w), 946 (w), 930 (w), 918 (w), 880 (w), 852 (w), 786 (w), 748 (s), 653 (m), 637 (s).

¹H NMR spectrum of complex 4 in C₆D₆

¹H NMR spectrum of complex 5 in C₆D₆

4-chloromethyl-1,3-dioxolan-2-one (7b)¹ : ¹H NMR (CDCl₃, 400 MHz): δ 4.98-4.93 (m, 1H, OCH), 4.59 (t, *J* = 8.6 Hz, 1H, OCH₂), 4.41 (q, 1H, OCH₂), 3.80-3.71 (m, 2H, ClCH₂).

4-phenyl-1,3-dioxolan-2-one $(7c)^2$: ¹H NMR (CDCl₃, 400 MHz): δ 7.34-7.27 (m, 5H, ArH), 5.59 (t, J = 8.0 Hz, 1H, OCH), 4.70 (t, J = 8.5 Hz, 1H, OCH₂), 4.21 (t, J = 8.2 Hz, 1H, OCH₂).

4-(3-butenyl)-1,3-dioxolan-2-one (7d)³: ¹H NMR (CDCl₃, 400 MHz): δ 5.80-5.70 (m, 1H, C*H*=CH₂), 5.06-4.99 (m, 2H, CH=C*H*₂), 4.73-4.66 (m, 1H, OCH), 4.52-4.48 (t, *J* = 8.2 Hz ,1H, OCH₂), 4.07-4.03 (t, *J* = 7.8 Hz, 1H, OCH₂), 2.24-2.09 (m, 2H, CH₂C*H*₂), 1.92-1.83 (m, 1H, C*H*₂CH₂), 1.79-1.70 (m, 1H, C*H*₂CH₂).

4-phenoxymethyl-1,3-dioxolan-2-one (7e)⁴ : ¹H NMR (CDCl₃, 400 MHz): δ 7.30 (t, *J* = 8.0 Hz, 2H, ArH), 7.01 (t, *J* = 7.4 Hz, 1H, ArH). 6.90 (d, *J* = 8.0 Hz, 2H, ArH). 5.04-4.99 (m, 1H, OCH), 4.59 (t, *J* = 8.5 Hz, 1H, OCH₂), 4.51 (q, 1H, OCH₂), 4.24-4.10 (m, 2H, OCH₂).

4-methoxymethyl-1,3-dioxolan-2-one (**7f**)⁵ : ¹H NMR (CDCl₃, 400 MHz): δ 4.83-4.77 (m, 1H, OCH), 4.48 (t, *J* = 8.4 Hz, 1H, OCH₂), 4.36 (dd, *J* = 6.1 and 6.1 Hz, 1H, OCH₂), 3.65-3.54 (m, 2H, OCH₂), 3.41 (s, 3H, OCH₃)

4-allyoxymethyl-1,3-dioxolan-2-one (**7g**)⁶ : ¹H NMR (CDCl₃, 400 MHZ): δ 5.90- 5.82 (m, 1H, C*H*=CH₂), 5.31-5.21 (m, 2H, CH=C*H*₂), 4.83-4.79 (m, 1H, OCH), 4.50 (t, *J* = 8.4 Hz, 1H, OCH₂), 4.40 (dd, *J* = 6.1 and 6.1 Hz, 1H, OCH₂), 4.07-4.04 (m, 2H, OCH₂), 3.71-3.60 (m, 2H, OCH₂).

4-butoxymethyl-1,3-dioxolan-2-one $(7h)^7$: ¹H NMR (CDCl₃, 400 MHz): δ 4.76-4.71 (m, 1H, OCH), 4.40 (t, J = 8.4 Hz, 1H, OCH₂), 4.26 (dd, J = 6.0 and 6.0 Hz, 1H, OCH₂), 3.59-3.45 (m, 2H, OCH₂), 3.39 (t, J = 6.6 Hz, 2H, OCH₂), 1.43 (m, 2H, CH₂CH₂), 1.24 (m, 2H, CH₂CH₂), 0.81-0.77 (t, J = 7.4 Hz, 3H, CH₃).

4-tert-butyl-benzoic acid 2-oxo-[1,3]dioxolan-4-ylmethyl ester $(7i)^7$: ¹H NMR (CDCl₃, 400 MHz): δ 7.94 (d, J = 8.6 Hz, 2H, ArH). 7.47 (d, J = 8.6 Hz, 2H, ArH), 5.08-5.02 (m, 1H, OCH), 4.64-4.59 (m, 1H, OCH₂), 4.59-4.47 (m, 2H, OCH₂), 4.43-4.39 (m, 1H, OCH₂), 1.32 (s, 9H, C(CH₃)₃).

4-decyl-1,3-dioxolan-2-one (7j)⁶: ¹H NMR (CDCl₃, 400 MHz): δ 4.73-4.65 (m, 1H, OCH), 4.54-4.49 (t, *J* = 8.2 Hz, 2H, OCH₂), 4.08-4.03 (t, *J* = 7.8 Hz, 2H, OCH₂), 1.85-1.75 (m, 1H, CH₂CH₂CH), 1.72–1.64 (m, 1H, CH₂CH₂CH), 1.30–1.49 (m, 16H, CH₃(CH₂)₈), 0.85–0.90 (t, 3H, *J* = 12 Hz, CH₃)

4- benzyloxymethyl-1,3-dioxolan-2-one (7k)⁸ : ¹H NMR (CDCl₃, 400 MHz): δ 7.36-7.27 (m, 5H, Ar-H), 4.78-4.73 (m, 1H, OCH), 4.54 (q, *J* = 12.0 Hz, 2H, OCH₂), 4.41 (t, *J* = 8.4 Hz, 1H, OCH₂), 4.31 (dd, *J* = 8.3, 6.0 Hz, 1H, OCH₂), 3.62 (m, 2H, ArCH₂).

4,4'-(butane-1,4-diyl)-bis-1,3-dioxolan-2-one (7l)⁹ : ¹H NMR (CDCl₃, 400 MHz): δ 4.75-4.68 (m, 2H, OCH), 4.54 (t, *J* = 8.2 Hz, 2H, OCH₂), 4.07 (t, *J* = 7.8 Hz, 2H, OCH₂), 1.45-1.83 (m, 8H, CH₂CH₂).

Figure S2. ¹H NMR spectrum of 7c in CDCl₃.

Figure S3. ¹H NMR spectrum of 7d in CDCl₃.

5.03 5.03 5.01 5.01 5.01 4.51 4.51 4.54 4.23 4.13 4.13 4.10 4.10 4.11

Figure S4. ¹H NMR spectrum of 7e in CDCl₃.

Figure S5. ¹H NMR spectrum of 7f in CDCl₃.

Figure S6. ¹H NMR spectrum of 7g in CDCl₃.

Figure S8. ¹H NMR spectrum of 7i in CDCl₃.

Figure S9. ¹H NMR spectrum of 7j in CDCl₃.

Figure S10. ¹H NMR spectrum of 7k in CDCl₃.

Figure S11. ¹H NMR spectrum of 7l in CDCl₃.

References

- 1. J. A. Castro-Osma, K. J. Lamb and M. North, ACS Catal., 2016, 6, 5012-5025.
- A. Barthel, Y. Saih, M. Gimenez, J. D. A. Pelletier, F. E. Kühn, V. D'Elia and J. M. Basse, *Green Chem.*, 2016, 18, 3116-3123.
- A. Decortes, M. M. Belmonte, J. Benet-Buchholza and A. W. Klei, *Chem. Commun.*, 2010, 46, 4580-4582.
- X. C. Wang, Y. Zhou, Z. J. Guo, G. J. Chen, J. Li, Y. M. Shi, Y. Q. Liu and J. Wang, *Chem. Sci.*, 2015, 6, 6916.
- Y. Tsutsumi, K. Yamakawa, M. Yoshida, T. Ema, and T. Sakai, *Org. Lett.*, 2010, 12, 5728-5731.
- R. C. Luo, X. T. Zhou, S. Y. Chen, Y. Li, L. Zhou and H. B. Ji, *Green Chem.*, 2014, 16, 1496-1506.
- J. Qin, P. Wang, Q. Y. Li, Y. Zhang, D. Yuan, Y. M. Yao, *Chem. Commun.*, 2014, 50, 10952-10955.
- 8. H. Zhou, G. X. Wang, W. Z. Zhang and X. B. Lu, ACS Catal., 2015, 5, 6773-6779.
- P. F. Gao, Z. W. Zhao, L. J. Chen, D. Yuan and Y. M. Yao, *Organometallics.*, 2016, 35, 1707-1712.