ARTICLE

Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

σ-Hammett Parameter: a Strategy to Enhance Both Photo- and Electro-luminescence Features of Heteroleptic Copper(I) Complexes

Michael D. Weber,^a Marta Viciano-Chumillas,^{b*} Donatella Armentano,^c Joan Cano,^{b,d} and Rubén D.

Department of Chemistry and Pharmacy University of Erlangen-Nuremberg (FAU) Egerlandstr. 3, D-91058 Erlangen, Germany. E-mail: ruben.costa@fau.de ^{b.} Dr. M. Viciano-Chumillas and Dr. J. Cano Institut de Ciència Molecular (ICMol) Universitat de València, 46980 Paterna, València, Spain.

E-mail: marta.viciano@uv.es

M D Weber and Dr R D Costa

^{c.} Dr. D. Armentano Dipartamento di Chimica e Tecnologie Chimiche (CTC), Università della Calabria, 87030 Rende, Cosenza, Italy

^{d.} Dr. J. Cano

Fundació General de la Universitat de València (FGUV)

Universitat de València, 46980 Paterna, València, Spain

Costa^{a*}

ARTICLE

Table S1. Crystal data for 1–4.

	$C_{51}H_{44}CuN_2O_3P_2{\cdot}BF_4{\cdot}$	$C_{51}H_{44}CuN_2OP_2 \cdot BF_4$	C ₄₉ H ₄₀ CuN ₂ OP ₂ ·BF ₄	$C_{49}H_{38}CuN_4O_5P_2\cdot BF_4\cdot$
	$C_4H_{10}O \cdot CH_2CI_2$ (1)	(2)	(3)	CH ₂ Cl ₂ (4)
Formula weight [gmol ⁻¹]	1104.23	913.18	885.134	1060.06
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic
Space group	<i>P</i> -1	P-1	P21/n	P21/c
a [Å]	10.3039(8)	11.5671(5)	10.5556(8)	13.4559(4)
b [Å]	14.7177(12)	12.8076(16)	21.7911(16)	19.0621(6)
<i>c</i> [Å]	18.7453(14)	16.809(2)	19.1037(14)	18.7780(6)
α [º]	74.574(3)	80.990(6)	90	90
β [º]	87.910(3)	72.435(6)	96.636(4)	101.7046(11)
γ [º]	74.470(3)	71.587(6)	90	90
V [ų]	2638.4(4)	2247.4(5)	4364.8(6)	4716.4(3)
Z	2	2	4	4
D _{calc} [gcm ⁻³]	1.390	1.349	1.347	1.493
Number of collected reflections (unique)	37850(10728)	118835(11920)	187774(7391)	80070(8244)
Number of observed reflections ($I_o > 2\sigma(I_o)$)	8578	9678	6437	7079
Internal R factor	0.057	0.038	0.054	0.034
Number of parameters	656	560	541	622
Goodness-of-fit S on F ²	0.85	0.96	1.04	0.69
Largest peak and hole in final difference Fourier map (e Å ⁻³)	-1.25 and 1.98	-0.46 and 0.82	-0.48 and 1.31	-0.90 and 1.54
μ [mm ⁻¹]	0.638	0.614	0.630	0.713
$R_1^{[a]} [l > 2.0\sigma(l)]$	0.0680	0.0450	0.0445	0.0351
$wR_2^{[b]}$ [all data]	0.2132	0.1742	0.1480	0.1133
т [К]	90	296	296	90

^[a] $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$. ^[b] $wR_2 = \{\sum [w(F_0^2 - F_c^2)^2] / \sum w(F_0^2)^2\}^{1/2}$.

Table S2. Selected bond lengths (Å) and angles ($^{\circ}$) for compounds [Cu(Xantphos)(R₂bipy)]BF₄ (1-4).

Compound	1	2	3	4
Bond lengths				
Cu-P1	2.2460(10)	2.2816(6)	2.2734(8)	2.2677(7)
Cu-P2	2.2513(10)	2.2429(6)	2.3033(8)	2.2657(7)
Cu-N1	2.073(3)	2.0705(18)	2.136(2)	2.065(2)
Cu-N2	2.023(3)	2.0775(17)	2.078(2)	2.0824(19)
Cu…O1	3.198(2)	3.169(2)	3.082(2)	3.120(2)
P1…P2	3.843	3.913	3.830	3.815
Bond angles				
P1-Cu-P2	117.42(4)	119.72(2)	113.64(3)	114.61(2)
N1-Cu-N2	79.82(12)	79.86(7)	79.26(9)	79.41(7)
N1-Cu-P1	116.31(9)	110.52(5)	105.13(7)	116.19(6)
N1-Cu-P2	109.86(9)	107.54(5)	117.27(7)	112.89(6)
P1-Cu-N2	112.83(9)	102.45(5)	126.65(7)	123.61(6)
P2-Cu-N2	114.93(9)	129.17(5)	110.30(7)	105.77(6)

Table S3. Details (distances [Å] and angles [$^{\circ}$]) of the $\pi \cdots \pi$ interactions in [Cu(Xantphos)(R₂bipy)]BF₄ (1-4).

Compound	Cg…Cgª	Cg…Cg	α^{b}
1	Cg8…Cg10 intram	3.855(2)	9.51(18)
2	Cg4…Cg4	3.9025(14)	0.00(11)
2	Cg4…Cg7 intram	3.985(3)	27.3(2)
3	Cg8…Cg10 intram	3.957(2)	30.01(17)
4	Cg8…Cg10 intram	3.6790(15)	14.83(13)

^o Cg are the six-membered rings: Cg4, N2, C45–C49; Cg7, C16–C21; Cg8, C22–C27; Cg10, C34–C39. ^b α is the dihedral angle between each pair of mean ring planes.

Table S4. Dihedral angle between CuN_2 and CuP_2 planes (θ) of **1–4** at the optimized gas geometries.

Compound	S ₀	S ₁	T ₀	oxidized
1	89.34	56.41	59.10	57.92
2	89.50	56.27	59.31	58.60
3	89.48	55.62	58.89	57.98
4	88.41	52.71	57.37	57.90

Table S5. A selection of experimental and theoretical electronic transitions in the UV-Vis region of **1–4**. Wavelengths (λ) and oscillator strengths (f) are in nm and x, respectively.

Compound	λ (gas-gas) ^{a,b}	λ (gas-solv) a,c	λ (solv-solv) ^{a,d}	λ_{\exp}^{e}
1	[2] 343 (0.1046)	[2] 324 (0.1406)	[2] 324 (0.1440)	372
	[7] 268 (0.0599)	[7] 256 (0.0652)	[7] 257 (0.0642)	
	[20] 231 (0.2628)	[11] 243 (0.1540)	[11] 244 (0.1273)	285
2	[2] 347 (0.1088)	[2] 325 (0.1405)	[2] 324 (0.1427)	376
	[9] 258 (0.0455)	[4] 270 (0.0299)	[5] 269 (0.0281)	
	[11] 248 (0.1596)	[7] 258 (0.1363)	[8] 257 (0.1990)	281
3	[2] 353 (0.0962)	[2] 328 (0.1227)	[2] 329 (0.1258)	384
	[8] 272 (0.0233)	[5] 272 (0.0280)	[5] 274 (0.0256)	
	[12] 251 (0.2157)	[8] 258 (0.1872)	[8] 258 (0.1926)	282
4	[2] 430 (0.1259)	[2] 418 (0.1531)	[2] 419 (0.1654)	503
	[6] 356 (0.0369)	[4] 362 (0.0451)	[4] 360 (0.0558)	423

^{*a*} Number of the electronic excitation (bracket), wavelength (in nm), and oscillator strength (*f* x 10⁴, parentheses). ^{*b*} Geometries optimized and TDDFT in gas phase. ^{*c*} Geometries optimized in gas phase and TDDFT using a solvation model. ^{*d*} Geometries optimized and TDDFT using a solvation model. ^{*b*} Wavelengths (in nm) found from a deconvolution of the experimental spectra.

ARTICLE

Journal Name

Compound		S ₀ (eV) ^a	S ₁ (eV) ^b	T ₀ (eV) ^c	T ₀ ' (eV) ^d	Fluor. ^e	Phosphor. ^f
			Solvatior	n model			
1	S ₀	0.00	0.77	0.78	0.80	623	719 (904)
	To	3.12	2.56	2.51	2.52		
	S ₁	3.46	2.76	2.81	2.79		
2	S ₀	0.00	0.76	0.76	0.78	636	742 (913)
	T ₀	3.02	2.49	2.44	2.44		
	S ₁	3.36	2.71	2.76	2.74		
3	S ₀	0.00	0.76	0.76	0.75	653	768 (940)
	T ₀	3.03	2.44	2.17	2.38		
	S ₁	3.31	2.66	2.55	2.72		
4	S ₀	0.00	0.72		0.69	926	1193 (1660)
	To	2.39	1.84		1.73		
	S ₁	2.67	2.06		2.13		
			Gas p	hase			
1	S ₀	0.00	0.74	0.75	0.77	675	791 (873)
	To	3.10	2.38	2.33	2.34		
	S ₁	3.32	2.58	2.65	2.63		
2	S ₀	0.00	0.74	0.73	0.75	696	822 (903)
	To	2.99	2.29	2.24	2.25		
	S ₁	3.21	2.52	2.60	2.56		
3	S ₀	0.00	0.74	0.73	0.75	720	859 (936)
	T ₀	2.92	2.23	2.17	2.18		. ,
	S ₁	3.15	2.46	2.55	2.52		
4	S ₀	0.00	0.71		0.66	953	1338 (1318)
	T ₀	2.43	1.62		1.59		
	S.	2 65	2 01		2 11		

Table S6. Relative energies (in eV) of the S₀, S₁ and T₀ states of **1–4** in the optimized geometries (in gas phase) for each state and wavelengths (in nm) of the fluorescence and phosphorescence emission. Results were calculated in gas phase and using a solvation model with the parameters for the acetonitrile solvent.

 o Optimized geometry for S₀. b Optimized geometry for S₁. c Optimized geometry for T₀ using the TDDFT to follow the energy of the T₀ state. d Optimized geometry for T₀ where the energy of the state was calculated from a direct calculation on a triplet state. e Wavelength (in nm) for the fluorescence emission. f Wavelength (in nm) for the phosphorescence emission. In parentheses is shown the value obtained from energies of S₀ and T₀ independently calculated, that is, calculation on singlet and triplet states were done for the S₀ and T₀, respectively.

Table S7. Bond lengths of compounds 1–4 at the optimized gas geometries.

Compound		S ₀ ^a	Ox ^a	S ₁ ^{<i>a</i>}	T ₀ ^{<i>a</i>}
1	а	1.352	1.346	1.350	1.362
	b	1.386	1.390	1.380	1.373
	С	1.406	1.404	1.427	1.430
	d	1.402	1.408	1.383	1.380
	e	1.400	1.383	1.419	1.429
	f	1.352	1.365	1.392	1.397
	g	1.489	1.479	1.424	1.416
2	а	1.347	1.347	1.357	1.359
	b	1.392	1.392	1.376	1.376
	С	1.405	1.404	1.432	1.433
	d	1.402	1.406	1.382	1.380
	e	1.400	1.392	1.424	1.425
	f	1.355	1.361	1.386	1.392
	g	1.488	1.478	1.426	1.419
3	а	1.346	1.346	1.361	1.363
	b	1.396	1.394	1.378	1.377
	С	1.398	1.397	1.425	1.428
	d	1.397	1.399	1.378	1.377
	e	1.401	1.395	1.423	1.425
	f	1.356	1.360	1.390	1.396
	g	1.486	1.476	1.427	1.419
4	а	1.346	1.344	1.363	1.365
	b	1.396	1.396	1.379	1.377
	С	1.391	1.388	1.416	1.420
	d	1.390	1.390	1.380	1.378
	e	1.399	1.394	1.407	1.409
	f	1.356	1.358	1.383	1.390
	g	1.483	1.476	1.441	1.431

Table S8. Atomic spin densities (ρ, in electrons) on the C4 and N1 atoms of the R₂bipy ligand and on the copper atom in the T₁ state of 1-4.

Compound	<i>ρ</i> (Cu)	<i>ρ</i> (C4)	ρ(C4′)	<i>ρ</i> (N1)	<i>ρ</i> (N1')
1	0.537	0.016	0.006	0.311	0.286
2	0.538	0.066	0.047	0.332	0.328
3	0.537	0.076	0.054	0.345	0.338
4	0.603	0.107	0.057	0.419	0.273

Figure S1. Top: Representation of the intramolecular $\pi-\pi$ interaction of 1. Bottom: Representation of the intra- and inter-molecular $\pi-\pi$ interactions of 2.

Figure S2. Views of the calculated spin density for the oxidized state of 1–4. The isodensity surfaces correspond to a cut-off value of 0.005 e bohr⁻³. Blue and yellow isosurfaces represent the positive and negative regions of spin density, respectively.

Figure S3. Theoretical absorption spectra for 1–4 simulated from the TDDFT results obtained in (a)-gas phase and (b) using a solvation model. More intense bands of 3 and 4, which correspond to the electronic transitions shown in Table S5, are marked with a short dashed line in blue and deep red, respectively. Theoretical electronic spectra were simulated using a values for the band-width at half-height of 2000 cm⁻¹.

Figure 54. Perspective views of the natural transition orbitals (NTOs) involved in the theoretical electronic excitations of **4**. These trasitions and their correspondence with the experimental absorption spectra are shown in Table S4. The isodensity surfaces correspond to a cut-off value of 0.05 e bohr⁻³. In the picture, one electron is promoted from the orbital at the left side to the other one at the right side. The wavelenghts for each transitions are those found from a TDDFT calculation in gas phase.

Figure S5. Left: Photoluminescence studies at room temperature (solid line) and 77 K (dotted line) for compounds 1–3 in powder. Right: Photoluminescence quantum yield (left axis) and energy red-shift of the PL from 77K to 293K (right axis) as a function of σ_p.

Figure S6. Left: decay profile (symbol) and biexponential fit (solid line) of **1–3**. Right: Average emission/lifetimes < τ > of **1–3** as a function of σ_p . The average lifetime can be obtained by using the following formula reported elsewhere:^[1] $R(t) = \sum_{i=1}^{r} A_i e^{-\frac{1}{\tau_i}}$

where A_i is constant $\tau_{1n}^{2} + A_{2} \tau_{2}^{2}$ lifetime can be obtained with: $< \tau > = \frac{1}{A_{1}\tau_{1} + A_{2}\tau_{2}}$

Figure 57. Views of the calculated spin density for the excited T₁ state of 1–4. The isodensity surfaces correspond to a cut-off value of 0.005 e bohr⁻³. Blue and yellow isosurfaces represent the positive and negative regions of spin density, respectively.

Figure S8. View of the optimized geometries of the S_1 (red) and T_1 (green) state of the [Cu(Xantphos)(R₂bipy)]⁺ cation of 3.

Figure 59. View of the experimental (red) and optimized (blue) geometries of the [Cu(Xantphos)(R₂bipy)]⁺ cations of 1–4. The hydrogen atoms were hidden for clarity.

Figure S10. Exemplary profile of a full device (PEDOT:PSS and the active layer) resulting from thickness measurements *via* profilometry technique (zero marked as red line). Inset: Optical image of the device surface showing the measured scratches as well as the tip of the profilometer and its shadow.

REFERENCES

1 C. M. Luk, L. B. Tang, W. F. Zhang, S. F. Yu, K. S. Teng, S. P. Lau, J. Mater. Chem., 2012, 22, 22378.

This journal is © The Royal Society of Chemistry 20xx

12 | J. Name., 2012, 00, 1-3