Electronic Supplementary Information

4,5-Substituted C^C* Cyclometalated Thiazol-2-ylidene Platinum(II) Complexes – Synthesis and Photophysical Properties†

Hendrik Leopold and Thomas Strassner*

Physikalische Organische Chemie, Technische Universität Dresden, Bergstrasse 66, 01069 Dresden, Germany

*Corresponding Author: E-mail: thomas.strassner@chemie.tu-dresden.de;

Fax: +49 351-463-39679; Tel: +49 351-463-38571

Table of Contents:

List of Abbreviations	S2
1D-NMR Spectra	S3
2D-NMR Spectra	S23
Photoluminescence Data	S27
Quantum Chemical Calculations	S29
References	S62

List of Abbreviations

acac	Acetylacetonate
B3LYP	Becke three-parameter exchange, Lee-Yang-Parr correlation functional
BP86	Becke 1988 exchange correction, Perdew86 correlation functional
CIE	Color coordinates, defined by an international commission (<i>CIE – Commission internationale de l'éclairage</i>)
COD	1,5-Cyclooctadiene
COSY	Homonuclear correlation spectroscopy
DFT	Density functional theory
DMF	Dimethylformamide
DMSO	Dimethyl sulfoxide
ECP	Effective core potential
FMO	Frontier molecular orbital
HMBC	Heteronuclear multiple-bond correlation spectroscopy
НОМО	Highest occupied molecular orbital
HSQC	Heteronuclear single-quantum correlation spectroscopy
Hz	Hertz
ILCT	Intraligand charge transfer
LUMO	Lowest unoccupied molecular orbital
MLCT	Metal-to-ligand charge transfer
M.p.	Melting point
NHC	N-Heterocyclic carbene
NMR	Nuclear magnetic resonance spectroscopy
NOESY	Nuclear Overhauser effect spectroscopy
OLED	Organic light-emitting diode
PMMA	Poly(methyl methacrylate)
QY	Quantum yield

1D-NMR Spectra

The following section contains all ¹H-NMR and ¹³C-NMR data for the reported compounds.

Figure S1. ¹H-NMR spectrum of compound 8 in DMSO.

Figure S2. ¹³C-NMR spectra of compound 8 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S3. ¹H-NMR spectrum of compound 9 in DMSO.

Figure S4. ¹³C-NMR spectra of compound 9 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S5. ¹H-NMR spectrum of compound 10 in DMSO.

Figure S6. ¹³C-NMR spectra of compound 10 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S7. ¹H-NMR spectrum of compound 11 in DMSO.

Figure S8. ¹³C-NMR spectra of compound 11 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S9. ¹H-NMR spectrum of compound 12 in DMSO.

Figure S10. ¹³C-NMR spectra of compound 12 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S11. ¹H-NMR spectrum of compound 13 in DMSO.

Figure S12. ¹³C-NMR spectra of compound 13 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S13. ¹H-NMR spectrum of compound 14 in DMSO.

Figure S14. ¹³C-NMR spectra of compound 14 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S15. ¹H-NMR spectrum of compound 15 in DMSO.

Figure S16. ¹³C-NMR spectra of compound 15 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S17. ¹H-NMR spectrum of compound 16 in DMSO.

Figure S18. ¹³C-NMR spectra of compound 16 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S19. ¹H-NMR spectrum of compound 17 in DMSO.

Figure S20. ¹³C-NMR spectra of compound 17 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S21. ¹H-NMR spectrum of compound 18 in DMSO.

Figure S22. ¹³C-NMR spectra of compound 18 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S23. ¹H-NMR spectrum of compound 19 in DMSO.

Figure S24. ¹³C-NMR spectra of compound 19 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S25. ¹H-NMR spectrum of compound 22 in DMSO.

Figure S26. ¹³C-NMR spectra of compound 22 in DMSO (top: DEPT; bottom: proton decoupled).

Figure S27. ¹H-NMR spectrum of compound 23 in CDCl₃.

Figure S28. ¹³C-NMR spectra of compound 23 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S29. ¹H-NMR spectrum of compound 24 in CDCl₃.

Figure S30. ¹³C-NMR spectra of compound 24 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S31. ¹H-NMR spectrum of compound 25 in CDCl₃.

Figure S32. ¹³C-NMR spectra of compound 25 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S33. ¹H-NMR spectrum of compound 26 in CDCl₃.

Figure S34. ¹³C-NMR spectra of compound 26 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S35. ¹H-NMR spectrum of compound 27 in CDCl₃.

Figure S36. ¹³C-NMR spectra of compound 27 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S37. ¹H-NMR spectrum of compound 28 in CDCl₃.

Figure S38. ¹³C-NMR spectra of compound 28 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S39. ¹H-NMR spectrum of compound 29 in CDCl₃.

Figure S40. ¹³C-NMR spectra of compound 29 in CDCl₃ (top: DEPT; bottom: proton decoupled).

Figure S41. COSY spectrum of compound 10.

Figure S42. HSQC spectrum of compound 10.

Figure S43. HMBC spectrum of compound 10.

Figure S44. NOESY spectrum of compound 10.

Figure S45. ¹H-¹⁵N-HMBC spectrum of compound 10.

Figure S46. COSY spectra of compound 11.

Figure S47. HSQC spectra of compound 11.

Figure S48. HMBC spectra of compound 11.

Photoluminescence Data

In the following section additional photophysical data of complexes 23–29 are given.

Figure S49. Absorption spectra for complexes **23–29** at room temperature (100% amorphous film).

Figure S50. Emission spectra of complexes 23–29 at room temperature (100% amorphous film).

	$\lambda_{exc} (nm)^a$	CIE x;y ^b	λ _{em} (nm) ^c	φ ^d	τ ₀ (μs) ^e	k _r (10 ³ s ⁻¹) ^g	k _{nr} (10 ³ s ⁻¹) ^h
23	370	0 22.0 /3	/107	0.56	8 76	113.6	2160.2
23	570	0.22,0.43	477	0.50	0.70	115.0	2109.2
23	370	0.54;0.45	547	0.40	2.4	421.1	570.0
neat film							
24	360	0.24;0.47	501	0.72	9.15	109.9	1834.0
24	360	0.32;0.51	510	0.55	5.36	184.6	1341.0
neat film							
25	370	0.26;0.47	502	0.69	9.11	110.4	1937.5
25	370	0.49;0.40	654	0.21	$n.d.^{f}$	n.d. ^f	n.d. ^f
neat film							
26	360	0.24;0.47	502	0.52	11.58	85.8	2908.8
26	360	0.56;0.43	611	0.06	n.d. $^{\rm f}$	n.d. ^f	n.d. ^f
neat film							
27	370	0.27;0.52	509	0.56	10.48	95.2	2587.2
27	370	0.55;0.43	612	0.37	4.28	234.2	995.4
neat film							
28	370	0.28;0.54	514	0.61	12.26	81.6	2917.2
28	370	0.59;0.40	629	0.40	4.28	232.6	1032.0
neat film							
29	370	0.34;0.54	522	0.38	10.2	100.0	2356.0
29	370	0.63;0.36	682	0.13	3.4	325.0	348.0
neat film							

Table S1. Additional photoluminescence data (2 wt% in PMMA and neat film, room
temperature) of complexes 23–29.

^aExcitation wavelength. ^bCIE coordinates at room temperature. ^cMaximum emission wavelength. ^dQuantum yield at λ_{exc} ; N₂ atmosphere. ^eDecay lifetimes (excited by laser pulses (355 nm, 1 ns)) given as $\tau_0 = \tau_v/\phi$. ^fn.d. = not determined; ^gk_r = ϕ/τ_v ; ^hk_{nr} =(1 - ϕ)/ τ_v

Quantum Chemical Calculations

29

#	S-T gap	λ_{max}	S-T gap	λ_{max} corr.	$\lambda_{max} \exp$.	$\Delta\lambda_{max}^{a}$
	[eV]	[nm]	corr. [eV]	[nm]	[nm]	[nm]
23	2.225	557.2	2.617	473.8	497	23.2
24	2.212	560.4	2.604	476.1	501	24.9
25	2.237	554.3	2.629	471.6	502	30.4
26	2.087	594.2	2.475	500.9	522	21.1
27	2.109	587.8	2.499	496.2	502	5.8
28	2.098	591.0	2.487	498.6	509	10.4
29	1.846	671.7	2.229	556.1	514	42.1
					average	22.6

Table S2. Summary of the prediction of wavelength maxima using the procedure described by Unger and Straßner (BP86/6-31G(d)).¹

 $^{a}\Delta\lambda_{max} = |(\lambda_{max} \exp. - \lambda_{max} \operatorname{corr.})|$

Table S3. Summary of the prediction of wavelength maxima using the procedure described by Unger and Straßner (B3LYP/6-31G(d)).¹

#	S-T gap	λ_{max} uncorr.	S-T gap	λ_{max} corr.	$\lambda_{max} \exp$.	$\Delta\lambda_{max}^{a}$
	[eV]	[nm]	corr. [eV]	[nm]	[nm]	[nm]
23	2.269	546.5	2.560	484.3	497	12.7
24	2.259	548.8	2.551	486.0	501	15.0
25	2.665	465.2	2.944	421.1	502	80.9
26	2.015	615.4	2.314	535.8	522	13.8
27	2.104	589.3	2.401	516.5	502	14.5
28	2.098	591.1	2.394	517.8	509	8.8
29	2.105	589.0	2.401	516.3	514	2.3
					average	21.1

 $a \Delta \lambda_{max} = |(\lambda_{max} \exp. - \lambda_{max} \operatorname{corr.})|$

Table S4. Comparison of bond lengths, angles and dihedral angles of structures 23–25 fromDFT calculations (B3LYP/6-31G(d)).

	23		24		25	
Bond [Å]/Angles	Singlet	Triplet	Singlet	Triplet	Singlet	Triplet
[°]						
S(1)-C(1)	1.731	1.765	1.724	1.761	1.712	1.711
C(1)-N(1)	1.358	1.443	1.364	1.453	1.373	1.374
N(1)-C(6)	1.434	1.356	1.447	1.364	1.451	1.452
Pt(1)-C(1)	1.934	1.943	1.928	1.934	1.923	1.930
Pt(1)-C(7)	2.003	1.949	1.995	1.944	1.993	1.996
Pt(1)-O(1)	2.133	2.122	2.137	2.127	2.137	2.128
Pt(1)-O(2)	2.086	2.124	2.091	2.129	2.089	2.074
S(1)-C(1)-N(1)	109.0	108.8	110.0	109.8	110.6	110.7
O(1)-Pt(1)-O(2)	89.6	89.5	89.3	89.1	89.2	88.3
C(1)-Pt(1)-C(7)	80.1	81.3	79.7	80.8	79.8	79.8
Pt(1)-C(1)-N(1)-C(6)	0.0	0.0	0.0	1.3	0	-2.6
N(1)-C(1)-Pt(1)-O(2)	-180.0	-180.0	-180.0	178.8	-180.0	-177.8

	23		24		25	
Bond [Å]/Angles	Singlet	Triplet	Singlet	Triplet	Singlet	Triplet
[°]						
S(1)-C(1)	1.744	1.771	1.737	1.767	1.725	1.766
C(1)-N(1)	1.374	1.446	1.380	1.456	1.389	1.444
N(1)-C(6)	1.435	1.369	1.447	1.377	1.450	1.397
Pt(1)-C(1)	1.925	1.934	1.920	1.926	1.990	1.936
Pt(1)-C(7)	2.001	1.953	1.992	1.949	1.915	1.946
Pt(1)-O(1)	2.131	2.124	2.134	2.130	2.134	2.116
Pt(1)-O(2)	2.085	2.122	2.089	2.125	2.088	2.137
S(1)-C(1)-N(1)	108.7	108.9	109.7	109.8	110.3	110.0
O(1)-Pt(1)-O(2)	90.9	90.7	90.6	90.3	90.4	90.0
C(1)-Pt(1)-C(7)	80.4	81.6	79.9	81.1	80.1	80.9
Pt(1)-C(1)-N(1)-C(6)	0.0	0.0	0.0	0.0	0.0	-8.2
N(1)-C(1)-Pt(1)-O(2)	-180.0	-180.0	-180.0	-180.0	-180.0	-173.4

Table S5. Comparison of bond lengths, angles and dihedral angles of structures 23–25 fromDFT calculations (BP86/6-31G(d)).

Table S6. Comparison of bond lengths, angles and dihedral angles of structures 26–29 fromDFT calculations (B3LYP/6-31G(d)).

	26		27		28		29	
Bond	Singlet	Triplet	Singlet	Triplet	Singlet	Triplet	Singlet	Triplet
[Å]/Angles [°]								
S(1)-C(1)	1.727	1.771	1.725	1.765	1.720	1.765	1.732	1.761
C(1)-N(1)	1.363	1.454	1.359	1.456	1.361	1.460	1.361	1.451
N(1)-C(6)	1.448	1.365	1.448	1.365	1.450	1.372	1.444	1.364
Pt(1)-C(1)	1.928	1.940	1.929	1.937	1.928	1.935	1.923	1.946
Pt(1)-C(7)	1.996	1.944	1.995	1.946	1.995	1.948	1.996	1.940
Pt(1)-O(1)	2.141	2.126	2.143	2.131	2.143	2.133	2.138	2.117
Pt(1)-O(2)	2.091	2.136	2.093	2.135	2.094	2.136	2.087	2.133
S(1)-C(1)-N(1)	110.0	108.8	109.9	108.7	110.0	108.7	111.4	109.3
O(1)-Pt(1)-O(2)	89.2	88.8	89.1	88.8	89.1	88.8	89.3	88.9
C(1)-Pt(1)-C(7)	79.7	81.1	79.6	80.9	79.6	80.8	79.8	81.0
Pt(1)-C(1)-N(1)-C(6)	4.2	1.5	1.1	-0.3	4.4	0.2	-4.0	-1.0
N(1)-C(1)-Pt(1)-O(2)	178.3	-177.3	179.6	-176.8	178.1	-177.0	-179.1	176.9

	26		27		28		29	
Bond	Singlet	Triplet	Singlet	Triplet	Singlet	Triplet	Singlet	Triplet
[Å]/Angles [°]								
S(1)-C(1)	1.740	1.771	1.737	1.769	1.732	1.752	1.743	1.758
C(1)-N(1)	1.378	1.455	1.375	1.456	1.377	1.396	1.377	1.449
N(1)-C(6)	1.448	1.377	1.447	1.377	1.449	1.445	1.444	1.378
Pt(1)-C(1)	1.920	1.930	1.921	1.928	1.920	1.910	1.915	1.935
Pt(1)-C(7)	1.994	1.948	1.993	1.950	1.992	1.984	1.994	1.945
Pt(1)-O(1)	2.139	2.130	2.140	2.135	2.141	2.145	2.136	2.119
Pt(1)-O(2)	2.089	2.132	2.091	2.130	2.092	2.091	2.086	2.127
S(1)-C(1)-N(1)	109.7	109.0	109.5	108.9	109.7	111.4	111.1	110.0
O(1)-Pt(1)-O(2)	90.5	90.1	90.4	90.1	90.4	90.1	90.6	90.1
C(1)-Pt(1)-C(7)	80.0	81.2	80.0	81.1	79.9	79.9	80.1	81.1
Pt(1)-C(1)-N(1)-C(6)	4.9	2.8	2.0	1.0	4.6	10.5	-4.0	2.9
N(1)-C(1)-Pt(1)-O(2)	177.8	-178.5	179.2	-177.8	177.9	176.2	-179.1	-179.1

Table S7. Comparison of bond lengths, angles and dihedral angles of structures 26–29 fromDFT calculations (BP86/6-31G(d)).

Figure S52. Calculated FMOs for the ground state geometries and calculated spin densities for the triplet state geometries of complexes **23–29** (B3LYP/6-31G(d); isovalue 0.02).

Table S8. Selected singlet exited states (S_n) and calculated transitions for complexes 23–29(TD-B3LYP/6-31G(d)-CPCM(dichloromethane)).

			oscillator	Excitation	Wavelength	
#	Excitation	Coefficient	strength	Energy [eV]	[nm]	Character
23	HOMO-1 \rightarrow LUMO	0.65	0.15	3.76	330	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+1$	0.69	0.10	4.08	304	¹ MLCT/ ¹ LLCT
	$HOMO \rightarrow LUMO+2$	0.56	0.14	4.78	259	¹ MLCT/ ¹ ILCT
	$HOMO-3 \rightarrow LUMO+1$	0.53	0.23	5.11	243	¹ MLCT/ ¹ LLCT
24	HOMO-1 \rightarrow LUMO	0.64	0.17	3.75	331	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+1$	0.69	0.11	4.06	306	¹ MLCT/ ¹ LLCT
	$HOMO-4 \rightarrow LUMO$	0.63	0.10	4.62	268	¹ MLCT/ ¹ LLCT
	$HOMO \rightarrow LUMO+2$	0.59	0.07	4.87	254	¹ MLCT/ ¹ LLCT
	$HOMO-2 \rightarrow LUMO+1$	0.56	0.09	5.07	244	¹ MLCT
	$HOMO-1 \rightarrow LUMO+2$	0.50	0.11	5.15	241	¹ MLCT/ ¹ LLCT
25	$HOMO-1 \rightarrow LUMO$	0.62	0.13	3.56	349	¹ MLCT
	$HOMO \rightarrow LUMO+1$	0.63	0.14	3.85	322	¹ MLCT/ ¹ LLCT
	$HOMO \rightarrow LUMO+2$	0.60	0.07	4.08	304	¹ MLCT/ ¹ LLCT
	$HOMO-1 \rightarrow LUMO+1$	0.55	0.07	1 15	200	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+2$	0.34	0.07	ч .15	2))	¹ MLCT/ ¹ LLCT
	$HOMO-4 \rightarrow LUMO$	0.54	0.27	4.55	272	¹ MLCT/ ¹ LLCT
	$HOMO-3 \rightarrow LUMO+1$	0.62	0.15	4.77	260	¹ MLCT/ ¹ ILCT
	$HOMO-4 \rightarrow LUMO+1$	0.60	0.06	5.03	246	¹ MLCT/ ¹ ILCT
26	$HOMO-1 \rightarrow LUMO$	0.65	0.20	3.74	332	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+1$	0.69	0.11	4.06	305	¹ MLCT/ ¹ ILCT
	$HOMO-4 \rightarrow LUMO$	0.51	0.08	4.50	276	¹ MLCT/ ¹ ILCT
	$HOMO-4 \rightarrow LUMO$	0.35	0.09	4 63	268	¹ MLCT/ ¹ ILCT
	$HOMO-1 \rightarrow LUMO+2$	0.48	0.07	1.05	200	¹ MLCT/ ¹ LLCT
27	$HOMO-1 \rightarrow LUMO$	0.67	0.20	3.74	332	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+1$	0.69	0.11	4.04	307	¹ MLCT/ ¹ LLCT
	$HOMO-1 \rightarrow LUMO+1$	0.68	0.03	4.27	290	¹ MLCT/ ¹ LLCT
	$HOMO-4 \rightarrow LUMO$	0.57	0.06	4.59	270	¹ MLCT/ ¹ ILCT
	$HOMO-4 \rightarrow LUMO$	0.30	0.13	4 74	262	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+3$	0.56				¹ MLCT/ ¹ ILCT
28	$HOMO-1 \rightarrow LUMO$	0.69	0.25	3.65	340	¹ MLCT/ ¹ ILCT
	$HOMO \rightarrow LUMO+1$	0.62	0.18	3.99	310	¹ MLC1/ ¹ LLC1
	$HOMO \rightarrow LUMO+2$	0.65	0.06	4.05	306	¹ MLC1/ ¹ ILC1
	$HOMO-I \rightarrow LUMO+I$	0.66	0.08	4.17	297	¹ MLC1/ ¹ LLC1
	$HOMO-4 \rightarrow LUMO$	0.57	0.10	4.43	280	¹ MLC1/ ¹ ILC1
	$HOMO-I \rightarrow LUMO+3$	0.35	0.14	4.58	270	1 MLC1/ 1 LC1
20	$\frac{\text{HOMO} \rightarrow \text{LUMO+3}}{\text{HOMO} + 1}$	0.56	0.20	2.65	240	¹ MLCT/ ¹ ILCT
29	$HOMO-I \rightarrow LUMO$	0.63	0.20	3.65	340	1 MLC1/ 1 LC1
	$HOMO \rightarrow LUMO+1$	0.69	0.10	4.06	305	1 MLC1/ 1 LLC1
	$HOMO-3 \rightarrow LUMO$	0.67	0.08	4.20	295	¹ MLC1/ ¹ ILC1
	$HOMO \rightarrow LUMO+2$	0.4/	0.07	4.40	218	WILCI/LLCI
	$HOMO \rightarrow LUMO+2$	0.31	0.12	4.64	267	WILCI/ILCI
	$\Pi \cup W \cup \rightarrow L \cup W \cup + 3$	0.30	0.07	4.02	252	MICT/ILUI
	$HOMO 2 \rightarrow LUMO + 1$	0.47	0.07	4.92	232	MICT/IICT
	$HOMO 1 \rightarrow LUMO + 2$	0.31	0.17	5.01	248	MICT/ILCI
	$HUMU-1 \rightarrow LUMU+3$	0.30				·WILUI/'ILUI

The following sections contains all calculated absorption spectra with plotted oscillator strengths for complexes **23–29** (TD-B3LYP/6-31G(d)-CPCM(dichloromethane)):^a

^a Data were extracted and normalized using Multifwn v3.3.8²

In the following section the coordinates of the singlet ground-state structure geometries for **23–29** are given (B3LYP/6-31G(d)).

С	-1.29421	2.65596	0.00003
С	-2.50778	3.35462	-0.00005
С	-3.72590	2.67128	-0.00013
С	-3.74301	1.27356	-0.00013
С	-2.52339	0.60452	-0.00004
С	-1.27518	1.25868	0.00004
Н	-0.35251	3.19677	0.00008
Н	-2.50257	4.44188	-0.00005
С	-1.10653	-1.27102	0.00001
С	-3.37457	-1.80027	-0.00003
С	-2.86350	-3.05184	0.00000
Н	-4.41666	-1.51508	-0.00006
Н	-3.40948	-3.98406	0.00001
Ν	-2.38894	-0.82326	-0.00004
Pt	0.31558	0.04035	0.0007
С	3.15113	-1.06441	-0.00014
С	2.97989	1.44595	-0.00000
0	1.91436	-1.37306	-0.00016
0	1.70702	1.59404	0.0007
С	4.09572	-2.25067	-0.00013
Н	5.14721	-1.95321	-0.00025
Н	3.89928	-2.87154	0.88145
Н	3.89909	-2.87174	-0.88151
С	3.74785	2.75204	-0.00004
Н	3.46637	3.33954	0.88144
Н	4.83046	2.60406	-0.00021
Н	3.46606	3.33965	-0.88134
С	3.69153	0.23659	-0.00006
Н	4.77257	0.31231	-0.00008
Н	-4.66378	3.21926	-0.00020
Н	-4.68960	0.73980	-0.00021
S	-1.11391	-3.00249	0.00003

Optimized singlet ground-state structure of 23.

Optimized singlet ground-state structure of 24.

С	0.82088	2.79618	-0.00008
С	1.93627	3.63992	-0.00021
С	3.22282	3.10229	-0.00042
С	3.40994	1.71644	-0.00034
С	2.28693	0.88917	-0.00001
С	0.97279	1.40752	-0.00004
Н	-0.18204	3.21240	-0.00005
Н	1.80004	4.71863	-0.00024
С	1.05111	-1.10524	-0.00011
С	3.36123	-1.48182	0.00043
С	2.90114	-2.75765	0.00057

Ν	2.30041	-0.55754	0.00001
Pt	-0.49129	0.05201	-0.00001
С	-3.20861	-1.33082	-0.00035
С	-3.28980	1.18373	0.00031
0	-1.94731	-1.51230	-0.00009
0	-2.03832	1.45813	0.00038
С	-4.02931	-2.60612	-0.00079
Н	-5.10541	-2.41567	-0.00016
Н	-3.77189	-3.20379	-0.88276
Н	-3.77102	-3.20502	0.88009
С	-4.18565	2.40601	0.00066
Н	-3.96387	3.01972	-0.87998
Н	-5.24787	2.14972	-0.00055
Н	-3.96554	3.01793	0.88297
С	-3.87724	-0.09079	-0.00010
Н	-4.96045	-0.12412	-0.00024
Н	4.09198	3.75413	-0.00062
Н	4.41749	1.32643	-0.00078
S	1.16037	-2.82611	0.00020
С	4.81202	-1.10688	-0.00005
Н	3.50529	-3.65351	0.00107
Н	5.08622	-0.52563	0.88694
Н	5.41180	-2.02071	-0.00044
Н	5.08515	-0.52531	-0.88720

Optimized singlet ground-state structure of 25.

С	1.51403	3.01211	-0.00023
С	1.01904	4.31918	-0.00012
С	-0.35647	4.54627	0.00016
С	-1.25204	3.47276	0.00031
С	-0.74322	2.17235	0.00014
С	0.64672	1.91673	-0.00008
Н	2.58455	2.83063	-0.00042
Н	1.70776	5.16042	-0.00024
С	-0.73475	-0.18209	0.00024
С	-2.89785	0.71485	0.00013
С	-3.17660	-0.62996	0.00013
Ν	-1.51849	0.94576	0.00025
Pt	1.17977	-0.00363	0.00002
С	2.76262	-2.61194	0.00018
С	4.15537	-0.51825	-0.00032
0	1.59604	-2.09939	0.00028
0	3.23408	0.37337	-0.00040
С	2.78617	-4.12781	0.00046
Н	3.80074	-4.53366	0.00013
H	2.25132	-4.49936	0.88196
Н	2.25060	-4.49968	-0.88047
С	5.55923	0.05146	-0.00051
Н	5.69324	0.68882	0.88108
Н	6.32850	-0.72454	-0.00082
Н	5.69286	0.68920	-0.88188
С	3.98473	-1.91039	-0.00008
H	4.88798	-2.50915	-0.00008

0.00028
0.00056
0.00017
0.00034
0.88728
-0.88639
0.00035
-0.00016
-0.00030
-0.00026
-0.00055
-0.00043
-0.89099
0.88954

Optimized singlet ground-state structure of 26.

С	0.24000	2.88812	-0.12668
С	-0.80463	3.81125	-0.24097
С	-2.12616	3.37200	-0.32113
С	-2.42269	2.00641	-0.26883
С	-1.36974	1.10399	-0.12620
С	-0.02076	1.51655	-0.07580
Н	1.27066	3.22756	-0.08565
Н	-0.58452	4.87544	-0.27952
С	-0.29888	-0.98335	-0.06427
С	-2.63111	-1.17306	-0.07099
С	-2.27697	-2.48349	-0.11643
Ν	-1.49844	-0.33691	-0.06859
Pt	1.32964	0.04812	-0.00955
С	3.93297	-1.54210	0.08158
С	4.20695	0.95878	0.10037
0	2.66252	-1.62634	0.03453
0	2.98125	1.32895	0.05783
С	4.65294	-2.87680	0.10416
Н	5.73999	-2.77000	0.13853
Н	4.32226	-3.45335	0.97574
Н	4.37755	-3.45363	-0.78619
С	5.19330	2.10876	0.13863
Н	4.98523	2.73733	1.01205
Н	6.23201	1.77194	0.17948
Н	5.05469	2.73605	-0.74946
С	4.69445	-0.35713	0.11369
Н	5.77122	-0.47356	0.15262
Н	-2.93772	4.08628	-0.42879
Н	-3.44990	1.67945	-0.34894
S	-0.54751	-2.69133	-0.11562
С	-4.03629	-0.71168	0.04945
С	-4.49673	-0.12251	1.23852
С	-4.94094	-0.94163	-0.99635
С	-5.83567	0.24096	1.36906
Н	-3.80201	0.05073	2.05538
С	-6.28231	-0.57793	-0.86122
Н	-4.58673	-1.39711	-1.91657

С	-6.73112	0.01507	0.31950
Н	-6.18174	0.69612	2.29281
Н	-6.97355	-0.75629	-1.68017
Н	-7.77452	0.29939	0.42404
Н	-2.95499	-3.32435	-0.09545

Optimized singlet ground-state structure of 27.

С	0.44727	2.97250	-0.03380
С	-0.56457	3.93790	-0.06436
С	-1.90416	3.55100	-0.08781
С	-2.25092	2.19611	-0.07565
С	-1.22881	1.24865	-0.03708
С	0.13620	1.61087	-0.02199
Н	1.49113	3.27157	-0.02131
Н	-0.30517	4.99392	-0.07314
С	-0.23452	-0.87458	-0.02036
С	-2.57251	-0.98458	-0.01929
С	-2.28620	-2.31567	-0.02681
N	-1.40715	-0.18785	-0.02234
Pt	1.43338	0.09470	-0.00466
С	3.98119	-1.59024	0.02135
С	4.34692	0.89852	0.03162
0	2.70800	-1.62785	0.00650
0	3.13515	1.31276	0.01776
С	4.65256	-2.95051	0.02561
Н	5.74326	-2.88327	0.03902
Н	4.31789	-3.51832	0.90135
Н	4.33934	-3.51322	-0.86130
С	5.37553	2.01169	0.04711
Н	5.21476	2.64292	0.92861
Н	6.40196	1.63683	0.05815
Н	5.23566	2.64831	-0.83408
С	4.78661	-0.43426	0.03377
Н	5.85906	-0.58990	0.04634
Н	-2.69225	4.29840	-0.11678
Н	-3.29356	1.91384	-0.09924
S	-0.54824	-2.57085	-0.02911
С	-3.95304	-0.43129	0.01635
С	-4.55569	-0.11110	1.24259
С	-4.68487	-0.26945	-1.16923
С	-5.86099	0.37961	1.27930
Н	-3.99396	-0.23999	2.16342
С	-5.99116	0.22078	-1.13002
Н	-4.22313	-0.52028	-2.11999
С	-6.57977	0.54842	0.09325
Н	-6.31670	0.62840	2.23364
Н	-6.54768	0.34648	-2.05460
Н	-7.59627	0.93106	0.12284
С	-3.24043	-3.47148	-0.01737
Н	-3.08765	-4.10838	0.86226
Н	-4.27212	-3.11114	-0.00129
Н	-3.11351	-4.10213	-0.90562

Optimized singlet ground-state structure of 28.

С	1.96489	3.04670	-0.17188
С	1.31007	4.27545	-0.30350
С	-0.08169	4.32430	-0.37861
С	-0.83770	3.15026	-0.30359
С	-0.16898	1.93699	-0.14341
С	1.24034	1.85464	-0.09829
Н	3.04925	3.00286	-0.13473
Н	1.88866	5.19444	-0.35973
С	0.11263	-0.38879	-0.04316
С	-2.14376	0.23931	-0.03281
С	-2.28797	-1.12184	-0.04235
Ν	-0.79017	0.62997	-0.05826
Pt	1.99816	0.01198	-0.00327
С	3.88525	-2.38678	0.13062
С	5.01523	-0.13910	0.11442
0	2.66562	-2.02311	0.07501
0	3.99633	0.63481	0.05601
С	4.09362	-3.88848	0.17747
Н	5.14920	-4.16798	0.22302
Н	3.57609	-4.29992	1.05164
Н	3.64014	-4.34596	-0.70932
С	6.34122	0.59446	0.14416
H	6.36473	1.26827	1.00831
Н	7.19680	-0.08334	0.19569
Н	6.43170	1.21832	-0.75252
C	5.01264	-1.54197	0.15155
С Н	5.98085	-2.02633	0.20147
Н	-0.59306	5,27520	-0.50030
Н	-1,91358	3,20613	-0.38094
S	-0 70702	-1 90072	-0 04451
C	-3 26932	1 20669	0 03727
C	-3 52462	1 91389	1 22368
C	-4 11901	1 38527	-1 06287
C	-4 60576	2 79087	1 30100
с Н	-2 86865	1 77949	2 07933
C	-5 20064	2 26408	-0.98242
с Н	-3 92752	0 83528	-1 97936
C	-5.44515	2,96873	0.19755
н	-4.79311	3,33475	2,22266
Н	-5.85082	2,39727	-1.84252
Н	-6.28697	3,65287	0.25911
C	-3.51056	-1.94729	-0.01949
C	-3 59794	-3 08915	-0 83643
C	-4 59071	-1 64432	0 82819
C	-4 73307	-3 89775	-0 81278
ч Н	-2.77637	-3.33449	-1.50408
C	-5,72612	-2 45248	0 84474
н	-4.53434	-0 78065	1 48130
C	-5.80323	-3 58125	0 02597
н	-4.78170	-4.77305	-1,45467
н	-6 54961	-2 20316	1 50841
H	-6.68853	-4.21081	0.04433
			0.01100

Optimized singlet ground-state structure of **29**.

С	-0.49277	3.07077	0.00904
С	0.31615	4.20986	-0.06252
С	1.70119	4.08158	-0.15633
С	2.29593	2.81580	-0.15409
С	1.47840	1.69181	-0.04325
С	0.07053	1.79328	0.00981
Н	-1.57343	3.16710	0.05382
С	0.90171	-0.57830	-0.06071
С	3.21556	-0.24567	0.02898
С	3.15792	-1.65310	-0.03868
Ν	1.92525	0.31846	-0.02772
Pt	-0.91240	0.05641	-0.00428
С	-3.07900	-2.09015	-0.02924
С	-3.91948	0.27732	0.10209
0	-1.82282	-1.87762	-0.05751
0	-2.81016	0.91969	0.09625
С	-3.47307	-3.55328	-0.08454
Н	-4.55522	-3.70024	-0.04671
Н	-3.08319	-4.00004	-1.00642
Н	-3.00900	-4.08674	0.75283
С	-5.14259	1.16804	0.17979
Н	-5.14393	1.85871	-0.67129
Н	-6.07680	0.60132	0.18200
Н	-5.09100	1.77813	1.08892
С	-4.09218	-1.11387	0.04545
Н	-5.11368	-1.47540	0.06066
Н	2.33147	4.96252	-0.23907
Н	3.36759	2.74426	-0.27361
S	1.48979	-2.20679	-0.11001
С	4.46009	0.38097	0.17976
Н	4.54643	1.45004	0.30099
С	4.31143	-2.43620	-0.00848
Н	4.24326	-3.51829	-0.06558
С	5.60941	-0.40570	0.21342
Н	6.57307	0.08090	0.33101
С	5.54472	-1.80087	0.10901
Н	6.45583	-2.39082	0.13467
Н	-0.13754	5.19788	-0.06114

In the following section the coordinates of the triplet-state structure geometries for **23–29** are given (B3LYP/6-31G(d)).

Optimized triplet-state structure of 23.

С	1.15883	2.67423	0.00003
С	2.32312	3.41965	0.00008
С	3.60001	2.77173	0.00009
С	3.71357	1.40039	0.00006
С	2.52419	0.62966	0.00002
С	1.20000	1.26256	0.00000
Н	0.18760	3.15897	0.00002
Н	2.28299	4.50493	0.00010
С	1.12652	-1.27264	-0.00005
С	3.46734	-1.68211	0.00005
С	2.99361	-2.94623	0.00005
Н	4.50520	-1.37930	0.00008
Н	3.59430	-3.84565	0.00008
N	2.46150	-0.72442	0.00001
Pt	-0.31213	0.03292	-0.00006
С	-3.11749	-1.13266	0.0009
С	-3.03077	1.38557	0.00002
0	-1.86924	-1.40850	0.00002
0	-1.76971	1.57773	-0.00006
С	-4.02084	-2.34960	0.00013
Н	-5.08197	-2.08871	0.00028
H	-3.80151	-2.96330	-0.88105
Н	-3.80128	-2.96341	0.88116
С	-3.85315	2.65928	0.00002
Н	-3.59652	3.25773	-0.88172
Н	-4.92870	2.46672	0.00016
Н	-3.59631	3.25786	0.88162
С	-3.69982	0.14626	0.00010
Н	-4.78279	0.18407	0.00015
Н	4.50046	3.38023	0.00012
Н	4.69032	0.92655	0.00007
S	1.23404	-3.03400	0.00000

Optimized triplet-state structure of 24.

С	-0.71720	2.78664	0.00713
С	-1.78881	3.65762	0.00828
С	-3.12151	3.14632	-0.00093
С	-3.38416	1.79432	-0.00885
С	-2.29429	0.88294	-0.00566
С	-0.91377	1.38804	0.00016
Н	0.30319	3.15662	0.01138
Н	-1.63054	4.73206	0.01491
С	-1.05409	-1.12224	-0.03073
С	-3.42530	-1.38911	0.00849
С	-2.99251	-2.67434	0.01957

N	-2.35708	-0.47992	-0.01041
Pt	0.48985	0.04284	-0.00813
С	3.18965	-1.36631	0.00192
С	3.32652	1.14889	0.01151
0	1.92236	-1.52910	-0.00764
0	2.08727	1.45084	0.00308
С	3.98152	-2.65885	0.00172
Н	5.06168	-2.49335	0.01005
Н	3.70224	-3.25481	0.87814
Н	3.71470	-3.24688	-0.88390
С	4.25768	2.34564	0.02213
Н	4.04785	2.96133	0.90439
Н	5.31233	2.06002	0.02884
Н	4.06061	2.96719	-0.85893
С	3.88387	-0.14430	0.01152
Н	4.96592	-0.20308	0.01899
Н	-3.95569	3.84312	-0.00304
Н	-4.40960	1.45479	-0.01885
S	-1.25163	-2.87169	0.00808
С	-4.86955	-0.98814	0.02075
Н	-3.64405	-3.53797	0.03754
Н	-5.48888	-1.88862	0.03934
Н	-5.12304	-0.39007	0.90384
Н	-5.14466	-0.41209	-0.87049

Optimized triplet-state structure of **25**.

С	-1.58059	2.98838	0.06022
С	-1.10500	4.30035	0.15575
С	0.26633	4.54408	0.18509
С	1.17910	3.48434	0.12836
С	0.69075	2.18020	0.05035
С	-0.69605	1.90852	0.00271
Н	-2.64783	2.79255	0.01969
Н	-1.80547	5.13043	0.20049
С	0.72394	-0.16429	-0.17043
С	2.86174	0.75106	0.09298
С	3.16305	-0.58693	-0.00447
Ν	1.48653	0.96795	-0.01445
Pt	-1.19981	-0.01165	-0.20187
С	-2.59983	-2.66601	0.19238
С	-4.13218	-0.58307	0.20422
0	-1.56344	-2.10038	-0.38002
0	-3.25183	0.28682	-0.22419
С	-2.46598	-4.13063	0.51445
Н	-3.37658	-4.53800	0.96552
Н	-2.23912	-4.71101	-0.39095
Н	-1.63407	-4.29833	1.21234
С	-5.52546	-0.05974	0.42465
Н	-5.95535	0.32755	-0.51048
Н	-6.19726	-0.83254	0.81202
Н	-5.51683	0.77648	1.13761
С	-3.82027	-1.96767	0.41125
Н	-4.65231	-2.58126	0.75125

Н	0.64323	5.56100	0.24828
Н	2.23418	3.71131	0.13751
S	1.71360	-1.55921	-0.21689
С	3.83633	1.86734	0.30880
Н	3.85385	2.54885	-0.54913
Н	3.57372	2.44785	1.19935
Н	4.83446	1.45657	0.43932
С	4.42583	-1.34113	0.03992
0	4.45862	-2.55590	-0.03518
0	5.53498	-0.57755	0.16220
С	6.77393	-1.30922	0.20553
Н	7.55240	-0.55200	0.30022
Н	6.78745	-1.98746	1.06227
Н	6.90697	-1.88866	-0.71124

Optimized triplet-state structure of 26.

С	0.32318	2.85438	-0.20442
С	-0.68089	3.78545	-0.38366
С	-2.03760	3.35937	-0.49508
С	-2.39573	2.03152	-0.40435
С	-1.37755	1.06623	-0.19432
С	0.02847	1.47475	-0.12436
Н	1.36288	3.15863	-0.13690
Н	-0.44767	4.84383	-0.45663
С	-0.29619	-1.02307	0.04052
С	-2.67826	-1.11288	-0.13773
С	-2.33313	-2.41644	-0.30448
N	-1.54329	-0.28266	-0.06604
Pt	1.32793	0.03726	0.02577
С	3.92538	-1.55359	0.14267
С	4.23942	0.94517	0.11521
0	2.65001	-1.62654	0.10353
0	3.02546	1.33248	0.07070
С	4.62225	-2.89891	0.18825
Н	5.71107	-2.81074	0.21750
Н	4.28258	-3.45263	1.07102
Н	4.33235	-3.48708	-0.68995
С	5.25281	2.07328	0.13279
Н	5.06407	2.71776	0.99902
Н	6.28399	1.71401	0.17276
Н	5.12340	2.69144	-0.76310
С	4.70420	-0.38404	0.14836
Н	5.77888	-0.51844	0.18484
Н	-2.81336	4.10234	-0.66135
Н	-3.43183	1.74055	-0.50369
S	-0.60955	-2.72427	-0.33718
С	-4.07133	-0.65612	0.06245
С	-4.43565	0.06241	1.21537
С	-5.06879	-1.01439	-0.85766
С	-5.76512	0.41640	1.43448
Н	-3.67350	0.33472	1.94000
С	-6.40045	-0.66247	-0.63192
Н	-4.79180	-1.55949	-1.75554

С	-6.75215	0.05513	0.51231
Н	-6.03298	0.96823	2.33134
Н	-7.16084	-0.94369	-1.35534
Н	-7.78813	0.33252	0.68602
Н	-3.04250	-3.23178	-0.35346

Optimized triplet-state structure of **27**.

С	0.50624	2,92770	-0.18337
С	-0.47239	3.89296	-0.32485
С	-1.84447	3.51363	-0.39784
С	-2.24066	2.19708	-0.31432
C	-1.24692	1.19488	-0.15313
C	0.17077	1.55861	-0.10725
H	1.55629	3.19882	-0.13865
H	-0.20602	4,94404	-0.39199
C	-0.22151	-0.92458	0.06442
C	-2.60831	-0.94488	-0.08295
C	-2.32777	-2.27628	-0.19589
N	-1.45014	-0.15054	-0.04467
P†	1.43211	0.08251	0.02618
C	3.98604	-1.58334	0.12314
C	4.36963	0.90533	0.06827
0	2 70981	-1 62214	0 10267
0	3 16650	1 32713	0 03725
C	4 64810	-2 94666	0 17144
С Н	5 73924	-2 88715	0 18396
н	4 30717	-3 48315	1 06433
н	4 32983	-3 53489	-0 69683
C	5 41467	2 00463	0 06128
С Н	5 25791	2 66080	0 92518
н	6 43588	1 61658	0 08827
н	5 28879	2 61959	-0 83734
C	4 79749	-0 43541	0 10718
С Н	5 86846	-0 59948	0 12995
н	-2 60113	4 28335	-0 52589
н	-3 28845	1 94264	-0 38062
S	-0 59436	-2 62301	-0 24036
C	-3.97556	-0.38755	0.07952
C	-4.37294	0.15925	1,31159
C	-4 90187	-0 43689	-0 97302
C	-5.66518	0.65339	1,48070
H	-3.66277	0.19589	2.13302
С	-6.19740	0.05537	-0.79995
н	-4.59855	-0.85200	-1,93000
C	-6.58070	0.60314	0.42526
H	-5.96000	1.07312	2.43854
H	-6.90383	0.01399	-1.62447
н	-7.58786	0.98814	0.55912
C	-3.30132	-3.41181	-0.23637
H	-3.12111	-4.10612	0.59401
Н	-4.33113	-3.05328	-0.17170
Н	-3.19246	-3.98636	-1.16517

Optimized triplet-state structure of 28.

С	1.96556	2.98844	-0.28623
С	1.32258	4.19774	-0.47299
С	-0.09761	4.24756	-0.53024
С	-0.87014	3.11473	-0.38380
C	-0.22371	1.86952	-0.17249
C	1 23296	1 78989	-0 14793
L L	3 0/801	2 93045	-0 25//5
11 11	1 00/07	5 11/5/	_0 50075
П	1.09404	J.114J4 0 45222	-0.30073
C	0.12604	-0.45322	0.13248
C	-2.15665	0.23896	0.01333
С	-2.29538	-1.12940	-0.05109
Ν	-0.82360	0.64787	0.00221
Pt	2.00217	0.00984	0.04098
С	3.94249	-2.34046	0.19636
С	5.05264	-0.08504	0.03946
0	2.71317	-1.99608	0.18077
0	4.03063	0.67658	-0.00819
С	4.16653	-3.83690	0.29616
H	5.22537	-4.10746	0.30541
н	3 69113	-4 21392	1 20890
н	3 67612	-4 33340	-0 54898
C C	6 37852	0 6/070	-0 01358
	6 42500	1 25660	-0.01330
H	0.43599	1.33669	0.02215
H	1.23728	-0.02458	0.02956
Н	6.43120	1.23/99	-0.93/06
С	5.06004	-1.48955	0.13307
H	6.03294	-1.96612	0.16117
Н	-0.59032	5.20194	-0.69652
Н	-1.94584	3.18774	-0.44206
S	-0.73377	-1.97475	-0.11088
С	-3.28307	1.20291	0.10758
С	-3.48706	1.93680	1.28830
С	-4.17459	1.36765	-0.96221
С	-4.56042	2.82064	1.39177
H	-2.79988	1 81254	2.12077
C	-5 24731	2 25437	-0 85607
н	-4 02207	0 79975	-1 87501
C C	-5 11211	2 98232	0 31925
U U	_1 70025	2.90232	2 21012
п	-4.70933	J.JOIOJ 0. 07575	2.31013
H	-5.92968	2.3/5/5	-1.692/5
H	-6.2/808	3.6/192	0.40096
C	-3.52978	-1.92698	-0.06666
С	-3.59448	-3.08934	-0.86127
С	-4.64892	-1.59446	0.72191
С	-4.74328	-3.87599	-0.88424
Н	-2.74178	-3.36248	-1.47644
С	-5.79316	-2.38825	0.69983
Н	-4.61257	-0.72454	1.36719
С	-5.84908	-3.52893	-0.10481
Н	-4.77371	-4.76229	-1.51201
Н	-6.64196	-2.11825	1.32226
Н	-6.74349	-4.14564	-0.11842

Optimized triplet-state structure of 29.

С	-0.53529	3.01536	-0.04113
С	0.25070	4.14521	-0.14426
С	1.66751	4.02200	-0.23198
С	2.29687	2.79561	-0.17865
С	1.50675	1.62866	-0.03265
С	0.04510	1.72586	-0.00340
Н	-1.61746	3.08853	-0.00206
С	0.89770	-0.64836	0.09804
С	3.24781	-0.20707	0.08437
С	3.21673	-1.60672	-0.11599
N	1.95587	0.34412	0.05821
Pt	-0.92025	0.04346	0.04490
С	-3.10898	-2.06903	-0.00110
С	-3.95808	0.30116	0.03838
0	-1.84702	-1.85922	0.01731
0	-2.85542	0.93991	0.06059
С	-3.49360	-3.53423	-0.03215
Н	-4.57557	-3.68653	-0.04591
Н	-3.05254	-4.00584	-0.91773
Н	-3.07016	-4.03856	0.84391
С	-5.19162	1.18263	0.05013
Н	-5.16424	1.85750	-0.81312
Н	-6.12078	0.60824	0.02517
Н	-5.18224	1.80910	0.94952
С	-4.12357	-1.09820	0.00600
Н	-5.14372	-1.46332	-0.01134
Н	2.27060	4.91782	-0.35435
Н	3.37030	2.74212	-0.29069
S	1.56864	-2.23191	-0.28028
С	4.47126	0.43153	0.32080
Н	4.51886	1.48277	0.56850
С	4.39333	-2.34754	-0.14875
Н	4.35906	-3.42074	-0.30959
С	5.64881	-0.32070	0.28910
Н	6.59687	0.17597	0.47236
С	5.61569	-1.69414	0.04313
Н	6.53908	-2.26532	0.01931
Н	-0.20079	5.13236	-0.18204

In the following section the coordinates of the singlet ground-state structure geometries for **23–29** are given (BP86/6-31G(d)).

С	1.28667	2.66193	-0.00027
С	2.50582	3.36639	-0.00035
С	3.73323	2.68220	-0.00025
С	3.75493	1.27673	-0.00011
С	2.52968	0.60069	-0.00005
С	1.27109	1.25646	-0.00011
Н	0.33502	3.20385	-0.00032
Н	2.49797	4.46279	-0.00049
С	1.09360	-1.27133	0.00021
С	3.37620	-1.81349	-0.00001
С	2.85201	-3.07223	0.00008
Н	4.42887	-1.53262	-0.00014
Н	3.39520	-4.01618	0.00002
Ν	2.39437	-0.82796	0.00010
Pt	-0.31658	0.03937	0.00005
С	-3.15040	-1.06555	-0.00027
С	-2.97196	1.46073	0.00001
0	-1.90253	-1.38438	0.00008
0	-1.68569	1.61196	-0.00004
С	-4.10101	-2.25242	-0.00072
Н	-5.15954	-1.94742	-0.00052
Н	-3.90815	-2.88038	-0.88899
Н	-3.90798	-2.88125	0.88688
С	-3.73892	2.77213	0.00076
Н	-3.45528	3.36751	-0.88571
Н	-4.83030	2.62332	-0.00113
Н	-3.45808	3.36478	0.88996
С	-3.68618	0.24487	-0.00029
Н	-4.77690	0.32424	-0.00043
Н	4.67746	3.23715	-0.00029
Н	4.71065	0.74013	-0.00001
S	1.09756	-3.01529	0.00027

Optimized singlet ground-state structure of 23.

Optimized singlet ground-state structure of 24.

С	0.80745	2.80388	-0.00006
С	1.92669	3.65545	-0.00005
С	3.22328	3.11952	-0.00001
С	3.41737	1.72678	0.00002
С	2.29065	0.89059	-0.00000
С	0.96539	1.40772	-0.00003
Н	-0.20613	3.21844	-0.00009
Н	1.78545	4.74272	-0.00007
С	1.04048	-1.10504	0.00001
С	3.36787	-1.48403	0.00003
С	2.89996	-2.76987	0.00003

N	2.30604	-0.55597	0.00002
Pt	-0.49343	0.05024	-0.00003
С	-3.20613	-1.33821	0.00000
С	-3.28614	1.19267	0.00003
0	-1.93239	-1.52571	0.00002
0	-2.02201	1.47377	-0.00000
С	-4.03001	-2.61637	-0.00011
Н	-5.11428	-2.42143	0.00045
Н	-3.77412	-3.22156	-0.88830
Н	-3.77327	-3.22226	0.88735
С	-4.18386	2.41859	0.00018
Н	-3.96380	3.03872	-0.88731
Н	-5.25418	2.15842	-0.00049
Н	-3.96475	3.03779	0.88858
С	-3.87331	-0.08958	0.00001
Н	-4.96645	-0.12229	0.00002
Н	4.09712	3.78010	0.00000
Н	4.43474	1.33491	0.00005
S	1.15398	-2.83823	0.00007
С	4.82140	-1.10823	0.00003
Н	3.50637	-3.67494	0.00002
Н	5.09807	-0.52170	0.89426
Н	5.42758	-2.02841	-0.00001
Н	5.09804	-0.52165	-0.89418

Optimized singlet ground-state structure of 25.

С	1.54681	3.00676	-0.00009
С	1.05862	4.32474	-0.00009
С	-0.32348	4.56550	-0.00001
С	-1.23370	3.49425	0.00006
С	-0.73219	2.18210	0.00003
С	0.66530	1.91232	-0.00003
Н	2.62472	2.81359	-0.00015
Н	1.76014	5.16729	-0.00014
С	-0.72585	-0.18140	0.00010
С	-2.89860	0.73713	0.00009
С	-3.18538	-0.61916	0.00005
Ν	-1.51500	0.96180	0.00010
Pt	1.18180	-0.00990	0.00003
С	2.74402	-2.62921	0.00002
С	4.15611	-0.52883	-0.00015
0	1.56649	-2.10892	0.00014
0	3.23261	0.38016	-0.00013
С	2.76058	-4.14934	0.00009
Н	3.78224	-4.56118	-0.00036
Н	2.22112	-4.52497	0.88798
Н	2.22027	-4.52507	-0.88724
С	5.56659	0.03527	-0.00017
Н	5.70878	0.67677	0.88810
Н	6.33647	-0.75249	-0.00073
Н	5.70838	0.67773	-0.88780
С	3.97343	-1.92645	-0.00012
Н	4.88209	-2.53497	-0.00019

70856	5.59094	0.00001
30046	3.71387	0.00013
71701 -	1.59322	0.00007
39864	1.85409	0.00018
78314	2.49230	0.89436
78330	2.49236	-0.89397
91123	1.43180	0.00024
44233 -	-1.39022	-0.00003
46243 -	-2.61938	-0.00003
57289 -	-0.62199	-0.00015
- 30434	1.38535	-0.00029
50665	-0.63433	-0.00060
36309 -	-2.02256	-0.89749
36350 -	-2.02224	0.89711
	70856 30046 71701 - 39864 78314 78330 31123 42233 - 42233 - 16243 - 57289 - 30434 - 50665 - 36309 - 36350 -	70856 5.59094 30046 3.71387 71701 -1.59322 39864 1.85409 78314 2.49230 78330 2.49236 31123 1.43180 42233 -1.39022 46243 -2.61938 57289 -0.62199 30434 -1.38535 50665 -0.63433 36309 -2.02256 36350 -2.02224

Optimized singlet ground-state structure of 26.

С	0.27285	2.89635	-0.15322
С	-0.76894	3.83202	-0.28586
С	-2.10170	3.40152	-0.37728
С	-2.41358	2.03173	-0.31481
С	-1.36406	1.11658	-0.14930
С	-0.00251	1.51975	-0.09228
Н	1.31545	3.22823	-0.10650
Н	-0.53692	4.90276	-0.33189
С	-0.29060	-0.97888	-0.07701
С	-2.64141	-1.15657	-0.09469
С	-2.28694	-2.47993	-0.15468
Ν	-1.50289	-0.32300	-0.08265
Pt	1.33391	0.04278	-0.01100
С	3.92542	-1.56228	0.10516
С	4.20860	0.95418	0.11914
0	2.64227	-1.64783	0.04781
0	2.97253	1.33665	0.06753
С	4.64392	-2.90234	0.13890
Н	5.73952	-2.79500	0.18143
Н	4.30551	-3.48139	1.01693
Н	4.37460	-3.48952	-0.75736
С	5.20111	2.10412	0.16091
Н	4.99225	2.74162	1.03874
Н	6.24613	1.75902	0.20819
Н	5.07162	2.73720	-0.73531
С	4.69013	-0.37114	0.13931
Н	5.77610	-0.49144	0.18708
Н	-2.91205	4.12791	-0.50287
Н	-3.45095	1.70653	-0.40569
S	-0.55373	-2.69717	-0.14775
С	-4.04528	-0.69596	0.05135
С	-4.46664	-0.01623	1.21747
С	-4.99772	-1.02478	-0.93638
С	-5.81323	0.33569	1.38041
Н	-3.73384	0.23321	1.99232
С	-6.34604	-0.67261	-0.76679
Н	-4.67052	-1.54729	-1.84183

С	-6.75598	0.00929	0.38960
Н	-6.12906	0.86148	2.28814
Н	-7.07520	-0.92827	-1.54344
Н	-7.80785	0.28613	0.52069
Н	-2.97252	-3.32604	-0.13015

Optimized singlet ground-state structure of 27.

С	0.46700	2.97723	-0.06675
С	-0.54701	3.95065	-0.12295
С	-1.89619	3.56695	-0.16230
С	-2.25155	2.20643	-0.13624
С	-1.22749	1.25085	-0.06570
С	0.14822	1.60923	-0.04125
Н	1.52117	3.27345	-0.04655
Н	-0.28085	5.01430	-0.14198
С	-0.22207	-0.87745	-0.03225
С	-2.57749	-0.98055	-0.03630
С	-2.29020	-2.32472	-0.05357
Ν	-1.40928	-0.18446	-0.03620
Pt	1.43787	0.08987	-0.00640
С	3.98084	-1.59827	0.04342
С	4.34560	0.90729	0.05068
0	2.69479	-1.64219	0.01891
0	3.12195	1.32901	0.02772
С	4.65667	-2.96101	0.05666
Н	5.75584	-2.88880	0.07611
Н	4.31845	-3.53320	0.93920
Н	4.34990	-3.53497	-0.83616
С	5.37574	2.02456	0.07057
Н	5.21056	2.66450	0.95597
Н	6.40993	1.64553	0.08955
Н	5.24364	2.66569	-0.81950
С	4.78484	-0.43286	0.05883
Н	5.86725	-0.58811	0.07971
Н	-2.68685	4.32342	-0.21558
Н	-3.30340	1.92129	-0.17601
S	-0.54615	-2.58426	-0.05358
С	-3.95840	-0.42498	0.02964
С	-4.50448	-0.01927	1.26765
С	-4.75413	-0.34670	-1.13336
С	-5.81642	0.47194	1.33523
Н	-3.89092	-0.08404	2.17273
С	-6.06743	0.14429	-1.06167
Н	-4.33276	-0.66265	-2.09385
С	-6.59918	0.55658	0.17099
Н	-6.22921	0.78722	2.29982
Н	-6.67487	0.20548	-1.97138
Н	-7.62372	0.94097	0.22559
С	-3.25034	-3.47855	-0.03793
Н	-3.09623	-4.12191	0.84794
Н	-4.28773	-3.10703	-0.01540
Н	-3.13375	-4.11630	-0.93352

Optimized singlet ground-state structure of 28.

С	1.98948	3.04575	-0.18003
С	1.33668	4.28415	-0.31446
С	-0.06350	4.34142	-0.38968
С	-0.83120	3.16594	-0.31089
C	-0.16464	1.94255	-0.14672
C	1 25386	1 85117	-0 10274
L L	3 08275	2 99378	-0 1/3//
	1 02520	2.99570	-0.14344
H C	1.92520	0.20176	-0.37353
	0.12424	-0.39176	-0.04458
С	-2.14623	0.24954	-0.03551
С	-2.29423	-1.12531	-0.04866
Ν	-0.79010	0.63833	-0.05876
Pt	2.00172	0.00721	-0.00405
С	3.87859	-2.39715	0.13614
С	5.01771	-0.13563	0.11765
0	2.64552	-2.03283	0.07750
0	3.99159	0.65143	0.05655
С	4.08706	-3.90300	0.18618
H	5.15157	-4.18308	0.23330
н	3 56652	-4 31919	1 06736
н	3 63218	-4 36906	-0 70629
C C	6 24000		0.10020
	0.34009	1 27090	0.14/34 1 01650
H	0.37303	1.2/980	1.01659
H	7.20826	-0.08759	0.20142
Н	6.444/3	1.22582	-0./5698
С	5.00937	-1.54525	0.15727
H	5.98608	-2.03448	0.20999
H	-0.57344	5.30287	-0.51513
H	-1.91698	3.22461	-0.38848
S	-0.70789	-1.91037	-0.05056
С	-3.27065	1.22095	0.03872
С	-3.50507	1.95325	1.22500
С	-4.14686	1.38065	-1.05518
С	-4.59189	2.83554	1.30701
H	-2.82707	1 83151	2.07686
C	-5.23352	2,26473	-0.96824
н	-3 96866	0 80986	-1 97243
C	-5 45756	2 99403	0 21067
U U	_1 76250	2.0006	2 22012
	-4.70330	2 2 2 2 2 2 6	2.23UIZ 1 02522
H	-3.90536	2.30300	-1.02552
H	-6.30582	3.68424	0.27694
C	-3.51543	-1.95228	-0.02350
С	-3.56872	-3.14939	-0.77813
С	-4.63731	-1.60301	0.76607
С	-4.70742	-3.96549	-0.75020
Н	-2.71429	-3.42971	-1.40509
С	-5.77573	-2.41991	0.78548
Н	-4.60719	-0.69559	1.37566
С	-5.81783	-3.60313	0.02939
Н	-4.72782	-4.88517	-1.34537
Н	-6.63198	-2.13359	1.40642
Н	-6.70864	-4.24047	0.05090

Optimized singlet ground-state structure of **29**.

С	-0.51893	3.07387	0.00664
С	0.28786	4.22403	-0.06485
С	1.68237	4.10476	-0.15931
С	2.28977	2.83641	-0.15671
С	1.47473	1.70041	-0.04485
С	0.05647	1.79287	0.00760
Н	-1.60954	3.16221	0.05137
С	0.89222	-0.57792	-0.06200
С	3.22043	-0.23431	0.02971
С	3.16413	-1.65254	-0.03754
N	1.92792	0.32904	-0.02886
Pt	-0.91526	0.05228	-0.00510
С	-3.06829	-2.10594	-0.03070
С	-3.92056	0.27458	0.10715
0	-1.79921	-1.89121	-0.06075
0	-2.80357	0.93128	0.10152
С	-3.46029	-3.57380	-0.08924
Н	-4.55056	-3.72264	-0.03837
Н	-3.08041	-4.02112	-1.02546
Н	-2.98271	-4.11800	0.74503
С	-5.14963	1.16367	0.18836
Н	-5.15839	1.86193	-0.66783
Н	-6.08836	0.58746	0.19122
Н	-5.10175	1.77855	1.10506
С	-4.08582	-1.12436	0.04751
Н	-5.11579	-1.49168	0.06368
Н	2.31165	4.99733	-0.24348
Н	3.37142	2.76926	-0.27944
S	1.49284	-2.21390	-0.11048
С	4.47082	0.39758	0.18239
Н	4.55351	1.47660	0.30662
С	4.32522	-2.43779	-0.00640
Н	4.25829	-3.52889	-0.06327
С	5.62785	-0.39253	0.21738
Н	6.59854	0.09971	0.33747
С	5.56470	-1.79530	0.11210
Н	6.48399	-2.38922	0.13836
Н	-0.17627	5.21728	-0.06323

In the following section the coordinates of the triplet-state structure geometries for **23–29** are given (BP86/6-31G(d)).

Optimized triplet-state structure of 23.

С	1.17838	2.67703	0.00008
С	2.35816	3.42084	0.00017
С	3.63507	2.75989	0.00020
С	3.73794	1.37578	0.00017
С	2.53886	0.61516	0.00010
С	1.21178	1.26156	0.00000
Н	0.20197	3.17248	0.00003
Н	2.32439	4.51538	0.00019
С	1.10839	-1.27494	0.00008
С	3.44682	-1.72730	0.0007
С	2.94449	-2.99440	0.00004
Н	4.49861	-1.44073	0.00005
Н	3.52922	-3.91457	-0.00001
N	2.45667	-0.75127	0.00011
Pt	-0.31090	0.03846	-0.00017
С	-3.11910	-1.12314	0.00020
С	-3.01764	1.41291	0.00001
0	-1.85970	-1.41457	0.00003
0	-1.74428	1.60353	-0.00021
С	-4.03229	-2.33794	0.00030
Н	-5.10001	-2.06711	0.00102
Н	-3.81798	-2.95948	-0.88756
Н	-3.81689	-2.96015	0.88742
С	-3.83721	2.69289	0.00014
Н	-3.57863	3.29830	-0.88728
Н	-4.92175	2.50056	-0.00086
Н	-3.58018	3.29713	0.88883
С	-3.69274	0.16607	0.00023
Н	-4.78541	0.21012	0.00041
Н	4.54918	3.36429	0.00026
Н	4.71978	0.89053	0.00022
S	1.18109	-3.04410	0.00005

Optimized triplet-state structure of 24.

С	-0.72287	2.79738	-0.00017
С	-1.80664	3.67304	-0.00008
С	-3.14339	3.15443	0.00014
С	-3.40242	1.78997	0.00023
С	-2.30491	0.88291	0.00009
С	-0.91746	1.39541	-0.00010
Н	0.30558	3.17314	-0.00031
Н	-1.64935	4.75676	-0.00015
С	-1.04179	-1.12009	0.00027
С	-3.41627	-1.41310	0.00010
С	-2.96419	-2.70626	0.00001

Ν	-2.35525	-0.49284	0.00017
Pt	0.48999	0.04709	-0.00014
С	3.18699	-1.36982	0.00004
С	3.31906	1.16373	0.00020
0	1.90707	-1.54284	-0.00007
0	2.06825	1.47042	0.00018
С	3.98509	-2.66350	0.00013
Н	5.07323	-2.49179	-0.00023
Н	3.71449	-3.26304	0.88779
Н	3.71394	-3.26350	-0.88705
С	4.25210	2.36407	0.00019
Н	4.04946	2.99018	0.88775
Н	5.31477	2.07443	0.00112
Н	4.05080	2.98912	-0.88843
С	3.87755	-0.13871	0.00015
Н	4.96962	-0.19568	0.00022
Н	-3.98830	3.85251	0.00024
Н	-4.43580	1.44235	0.00044
S	-1.21867	-2.87819	0.00000
С	-4.86578	-1.02205	0.00005
Н	-3.60795	-3.58684	-0.00007
Н	-5.13547	-0.43089	-0.89420
Н	-5.48591	-1.93284	-0.00007
Н	-5.13559	-0.43105	0.89438

Optimized triplet-state structure of **25**.

С	-1.53651	2.97809	0.10754
С	-1.05385	4.28288	0.08094
С	0.34613	4.51996	-0.05409
С	1.26316	3.47144	-0.13950
С	0.78717	2.14096	-0.07660
С	-0.65080	1.87157	0.01801
Н	-2.60914	2.77279	0.18518
Н	-1.74128	5.13300	0.14862
С	0.72593	-0.22080	-0.24837
С	2.90364	0.73353	-0.01789
С	3.19121	-0.63105	-0.03866
N	1.54052	0.96550	-0.12935
Pt	-1.18795	0.00315	-0.06451
С	-2.76864	-2.59887	0.00167
С	-4.18897	-0.50270	0.17952
0	-1.59068	-2.07391	-0.10754
0	-3.28006	0.40361	0.10540
С	-2.77139	-4.11723	-0.02375
Н	-3.78364	-4.54160	0.06878
Н	-2.31513	-4.47054	-0.96574
Н	-2.14172	-4.49945	0.79960
С	-5.60190	0.03594	0.33094
Н	-5.83597	0.70519	-0.51639
Н	-6.35751	-0.76418	0.37559
Н	-5.66906	0.64454	1.25088
С	-3.99104	-1.90881	0.13565
Н	-4.89046	-2.52575	0.21512

971 286
286
)41
326
392
324
512
)24
006
124
327
)75
654

Optimized triplet-state structure of 26.

С	0.34714	2.87127	-0.21387
С	-0.65944	3.81725	-0.39777
С	-2.02371	3.39616	-0.51971
С	-2.39262	2.05919	-0.43205
С	-1.37612	1.08802	-0.21613
С	0.04097	1.49082	-0.13726
Н	1.39750	3.17138	-0.13962
Н	-0.41666	4.88300	-0.46686
С	-0.29055	-1.00853	-0.00401
С	-2.68145	-1.10533	-0.15185
С	-2.32812	-2.42435	-0.30554
N	-1.54271	-0.27310	-0.09513
Pt	1.33047	0.03855	0.01667
С	3.91126	-1.58103	0.15296
С	4.24124	0.93424	0.14069
0	2.62263	-1.65309	0.09961
0	3.01970	1.33665	0.08832
С	4.60373	-2.93328	0.20145
Н	5.70122	-2.84768	0.24220
Н	4.25255	-3.49487	1.08572
Н	4.32012	-3.52467	-0.68757
С	5.26506	2.05772	0.17319
Н	5.07525	2.70610	1.04742
Н	6.30073	1.68560	0.22071
Н	5.15052	2.68815	-0.72700
С	4.69597	-0.40798	0.17075
Н	5.77936	-0.54959	0.21666
Н	-2.80192	4.14831	-0.69324
Н	-3.43838	1.76907	-0.54180
S	-0.60393	-2.72199	-0.32499
С	-4.07360	-0.65379	0.06073
С	-4.41892	0.14440	1.17875
С	-5.10045	-1.09833	-0.80355
С	-5.75575	0.48786	1.41740
Н	-3.63371	0.48300	1.86329
С	-6.43776	-0.75547	-0.55621
Н	-4.83733	-1.70168	-1.67946

С	-6.77043	0.04025	0.55244
Н	-6.00804	1.10163	2.28931
Н	-7.22101	-1.10355	-1.23880
Н	-7.81453	0.31227	0.74197
Н	-3.03755	-3.25230	-0.33327

Optimized triplet-state structure of **27**.

С	0.52873	2.94419	-0.19702
С	-0.45301	3.92205	-0.34725
С	-1.83252	3.54572	-0.42974
С	-2.23784	2.22001	-0.34385
С	-1.24476	1.21481	-0.17312
С	0.18357	1.57357	-0.11944
Н	1.58915	3.21207	-0.14611
Н	-0.17845	4.98037	-0.41441
C	-0.21558	-0.91176	0.03007
C	-2.60918	-0.93740	-0.09465
С	-2.32345	-2.28426	-0.19663
N	-1.44815	-0.14292	-0.06584
Pt	1,43482	0.08475	0.02159
C	3,97094	-1.60881	0.12873
C	4.37147	0.89559	0.08458
0	2.68082	-1.64683	0.10280
0	3,16078	1,33310	0.05229
C	4.62848	-2,97907	0.17651
H	5.72854	-2,92245	0.19293
н	4 28174	-3 52259	1 07374
н	4 31016	-3 57119	-0 70021
C	5 42720	1 98997	0 08574
H	5,27710	2.64861	0.96012
н	6.45281	1.58868	0.11127
н	5.30927	2.61843	-0.81541
C	4.78867	-0.45783	0.11856
H	5.86841	-0.62957	0.14384
H	-2.59261	4.32321	-0.56806
H	-3.29518	1.96431	-0.41841
S	-0.58633	-2.62196	-0.22651
C	-3.97636	-0.38331	0.07938
С	-4.34177	0.24672	1.29258
С	-4.94588	-0.52093	-0.93896
С	-5.64401	0.73046	1.47567
H	-3.59702	0.35269	2.08902
С	-6.25093	-0.03869	-0.74933
Н	-4.66399	-0.99349	-1.88628
С	-6.60283	0.58915	0.45609
Н	-5.91405	1.21449	2.42080
Н	-6.99125	-0.14834	-1.54962
Н	-7.62023	0.96826	0.60240
С	-3.29658	-3.42403	-0.21621
Н	-3.10274	-4.12069	0.62091
Н	-4.33290	-3.05944	-0.13523
Н	-3.20495	-4.00886	-1.15096

Optimized triplet-state structure of 28.

С	2.01212	3.06213	0.06510
С	1.39153	4.31229	-0.08523
С	0.00206	4.39274	-0.28733
С	-0.78830	3.23278	-0.29824
С	-0.16298	1.99092	-0.09405
С	1.25219	1.87905	0.03975
Н	3.09835	2.98717	0.18008
Н	1.99435	5.22788	-0.06679
С	0.11344	-0.33799	-0.18462
С	-2.15113	0.33436	-0.14513
С	-2.28490	-1.13299	-0.22090
N	-0.81585	0.70031	-0.09476
Pt.	1.97654	0.03170	0.01629
C	3.83146	-2.39892	-0.06327
C	4.98763	-0.16808	0.24868
0	2.60483	-2.01542	-0.10907
0	3 96582	0 63043	0 25256
C	4 02614	-3 90037	-0 19977
с н	5 08607	-4 19727	-0 15535
н	3 47252	-4 41859	0.10000
н	3 59619	-4 24174	-1 15847
C	6 31745	0 54310	0 42818
с u	6 31668	1 09301	1 38654
и П	0.51000 7 17287	-0 15059	0 11357
и П	6 11769	1 29263	-0 37307
II C	1 06005	-1 56902	0.37307
U U	4.90000	-1.50892	0.10130
п	0 47966	-2.07244	0.12277
п	-0.4/000	2.204/9	-0.441/4
н	-1.00900	3.31320	-0.47810
S	-0.6/305	-1.8/360	-0.489/4
C	-3.28/93	1.24809	-0.11398
C	-3.44542	2.236/3	0.90111
C	-4.33840	1.08967	-1.06414
C	-4.58580	3.04540	0.93662
H	-2.6/410	2.34501	1.6/05/
C	-5.46809	1.91311	-1.02634
H	-4.24101	0.32486	-1.84133
C	-5.60143	2.89670	-0.028/4
H	-4.69114	3.79042	1./3341
H	-6.25194	1.78645	-1.78148
H	-6.49194	3.53335	0.00511
C	-3.40957	-1.95890	0.03988
С	-3.36409	-3.36172	-0.30562
С	-4.62169	-1.48816	0.67316
С	-4.43976	-4.20546	-0.06257
Н	-2.47238	-3.76187	-0.80174
С	-5.68563	-2.35270	0.91202
Н	-4.68452	-0.45475	1.01562
С	-5.62017	-3.71431	0.54338
Н	-4.37205	-5.26042	-0.35165
Н	-6.58163	-1.96646	1.41143
H	-6.46630	-4.38303	0.73195

Optimized triplet-state structure of 29.

С	0.55688	3.03086	-0.01304
С	-0.22920	4.17669	-0.09882
С	-1.65192	4.06083	-0.20386
С	-2.29122	2.82562	-0.18016
С	-1.50410	1.65168	-0.04661
С	-0.03358	1.74149	-0.00328
Н	1.64867	3.09787	0.03446
С	-0.89027	-0.63008	0.01542
С	-3.24826	-0.20312	0.06204
С	-3.21165	-1.61979	-0.08146
Ν	-1.95592	0.35146	0.01421
Pt	0.92251	0.04765	0.02096
С	3.08530	-2.09468	-0.00951
С	3.95839	0.28635	0.07086
0	1.81037	-1.87612	-0.01135
0	2.85174	0.94137	0.08246
С	3.46015	-3.56637	-0.04927
Н	4.54988	-3.72678	-0.04037
Н	3.01123	-4.08433	0.81711
Н	3.03411	-4.03068	-0.95677
С	5.20285	1.15772	0.11308
Н	5.18733	1.78222	1.02447
Н	6.13283	0.56765	0.09931
Н	5.20173	1.84695	-0.75054
С	4.10863	-1.12478	0.02505
Н	5.13539	-1.50126	0.02047
Н	-2.25661	4.96757	-0.31863
Н	-3.37280	2.77875	-0.31163
S	-1.55665	-2.24098	-0.21314
С	-4.48378	0.44211	0.27114
Н	-4.53707	1.51151	0.47691
С	-4.39075	-2.37357	-0.08429
Н	-4.35032	-3.46109	-0.20164
С	-5.66370	-0.32282	0.26927
Н	-6.62238	0.18075	0.43053
С	-5.62341	-1.71289	0.07977
H	-6.55157	-2.29399	0.07714
Н	0.23224	5.16987	-0.11141

References

- 1. Y. Unger, T. Strassner and C. Lennartz, J. Organomet. Chem., 2013, 748, 63.
- 2. T. Lu and F. Chen, J. Comput. Chem., 2012, **33**, 580.