Supporting information

One-Step Large-Scale Drastically Active g-C₃N₄ Nanosheets for Efficient Sunlight-Driven Photocatalytic Hydrogen Production

Waheed Iqbal,^{a‡} Bocheng Qiu,^{a‡} Juying Lei,^a Lingzhi Wang,^a Jinlong Zhang^{*a,b} and Masakazu Anpo^{*c}

^aKey Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Chemical Engineering, East China University of Science and Technology, 130-Meilong Road, Shanghai 200237, P. R. China

^b558 Fenhu Road, Suzhou 201211, P. R. China

c Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, Fujian 350116, China

E-mail: jlzhang@ecust.edu.cn, Tel.: +86-21-64252062, Fax: +86-21-64252062

‡ Waheed Iqbal and Bocheng Qiu contributed equally to this work

Fig. S1. The C 1s XPS spectra of bulk $g-C_3N_4$ and $g-C_3N_4$ NSs. The peak of C 1s at 284.6 eV arises from the adventitious carbon in the samples.

Fig. S2 Raman spectra of bulk g-C₃N₄ and g-C₃N₄ NSs ,conducted at 785nm Laser using silicon glass as a substrate to avoid florescence.

Fig. S3. (a) XRD patterns of as-prepared and post-reaction $g-C_3N_4$ NSs photocatalysts and (b) TEM image after four successive cycles of H_2 Production. There is no obvious difference noticed in crystal structure and catalyst has retained the sheet like morphology, demonstrating the good stability.

Fig. S4 S 2p XPS spectrum of ammonium sulphate mediated $g-C_3N_4$ NSs.

Fig. S5 TEM image (a) of Bulk $g-C_3N_4$ and corresponding TEM EDX mapping of carbon (b), nitrogen (c), TEM image (d) of $g-C_3N_4$ NSs and corresponding TEM EDX mapping of carbon (e), nitrogen (f).

Fig. S6 Plots of photogenerated carriers trapped for $g-C_3N_4$ Ss which show that the superoxide radical ($\cdot O_2^-$) generated by reduction of O_2 play a major role in photocatalytic degradation of RhB pollutant.

Fig. S7 TOC removal of RhB in the presence of $g-C_3N_4$ NSs photocatalyst under simulated solar light irradiation for 8 min which showed majority portion of the RhB has been mineralized by photocatalyst and converted into CO_2 .

Fig. S8 Simulated solar light photodegradation of phenol

Fig. S9 EIS Nyquist plots of $g-C_3N_4NSs$ and bulk $g-C_3N_4$ under AM 1.5G irradiation.

Samples	C wt.%	N wt.%	O wt.%	C/N
Bulk g-C ₃ N ₄	35.73	62.5	1.65	0.666
g-C ₃ N ₄ NSs	36.17	61.86	1.83	0.682

Table S1. Elemental analysis of bulk $g-C_3N_4$ and $g-C_3N_4$ NSs.

Table S2. The quantum efficiency of $g-C_3N_4NSs$ under irradiation of different wavelength monochromatic light.

Wavelength	365 nm	420 nm	475 nm	525 nm	575 nm
Φ	20.10 %	3.30 %	0.58 %	0.31%	0.15 %