Supporting Information

Ti-doped α-Fe₂O₃ nanorods with controllable morphology by carbon layer coating for enhanced photoelectrochemical water oxidation

Dejian Yan,^a Jikai Liu,^{*a,b} Zhichao Shang,^a He'an Luo^{*a,b}

a. School of Chemical Engineering, Xiangtan University, Xiangtan 411105, P. R. China.b. National and Local United Engineering Research Center for Chemical Process Simulation and Intensification, Xiangtan University, Xiangtan 411105, P. R. China.

Email: jikailiu@xtu.edu.cn; heanluo@126.com

Fig. S1 (a) The TGA curves of glucose in N_2 ; (b) The weight of glucose and C/Ti-Fe₂O₃-Ar on per square centimeter of Ti foil substrate.

Fig. S2 The general survey XPS spectra of the C/Ti-Fe₂O₃-Ar and Ti-Fe₂O₃-Air.

Fig. S3 LSV measurements for the Pure α-Fe₂O₃, Ti-Fe₂O₃-Air and Ti-Fe₂O₃-Ar photoanodes.

Fig. S4 LSV measurements for the Ti-Fe $_2O_3$ -Ar synthesized with different annealing temperatures in argon

Fig. S5 Transient photocurrent responses of the C/Ti-Fe₂O₃-Ar under simulated sunlight irradiation at 1.23 V.

Fig. S6 The Photoconversion efficiency of the C/Ti-Fe₂O₃-Ar, Ti-Fe₂O₃-Ar and Pure α -Fe₂O₃.

Photoconversion efficiency, η , which is the light energy to chemical energy conversion efficiency, is calculated as:

$$\eta = j_p \times (1.23 - |V|) / I_{\theta}$$

where V is the bias potential vs. RHE, j_p is the photocurrent density at the measured potential, and I_0 is the power density of incident light.

Fig. S7 LSV measurements for the C/Ti-Fe₂O₃-Ar (blue) , Ti-Fe₂O₃-Ar (black) and Pure α -Fe₂O₃ (red) irradiated with simulated sunlight. The inset are the highlighted onset potentials.