Supporting Information

An Amidato Divalent Ytterbium Cluster: Synthesis and molecular

Structure, Its Reactivity to Carbodiimides and the Application in the

Guanylation Reaction

Chao Gong, Hao Ding, Chengrong Lu and Bei Zhao*

Table of contents

		Page
1.	Crystallographic data for complexes 1-4	S 1
2.	Figures and selected bond lengths and bond angles of complexes	S2
	1-4	
3.	¹ H and ¹³ C NMR spectra of complex 1 , HL and the products	S 7

	1	2	3	4
Formula	$C_{128}H_{148}N_6O_6Yb_3$	<mark>C₁₅₁H₁₈₃N₀O₈Yb₃</mark>	$C_{128}H_{148}N_6O_6Yb_2$	<mark>C₁₀₄H₁₂₆N₆O₄Yb₂</mark>
Fw	2385.65	<mark>2771.17</mark>	2212.60	<mark>1870.18</mark>
<i>Т</i> (К)	223(2)	<mark>293(2)</mark>	293(2)	<mark>293(2)</mark>
Cryst syst	Triclinic	Monoclinic	Triclinic	Triclinic
Space group	P -1	<mark>P 2₁/n</mark>	P -1	<mark>P -1</mark>
Crystal size	0.20-0.20-0.20	0.00.0.05.0.00	0.70-0.05-0.20	0.00.00.00.00.00
(mm³)	0.20×0.20×0.20	0.30×0.25×0.22	0.70×0.65×0.30	0.32×0.20×0.10
<i>a</i> (Å)	13.9951(4)	<mark>29.2664(3)</mark>	13.8319(4)	<mark>14.2348(4)</mark>
bÅ)	21.5347(7)	<mark>14.09698(13)</mark>	14.3956(4)	<mark>16.1058(5)</mark>
<i>c</i> (Å)	23.3361(8)	<mark>33.5205(4)</mark>	16.1575(5)	<mark>23.8596(9)</mark>
α(°)	70.496(3)	<mark>90</mark>	68.116(3)	<mark>103.924(3)</mark>
β (°)	80.596(3)	<mark>98.7237(10)</mark>	67.267(3)	<mark>96.231(3)</mark>
γ(°)	79.095(3)	<mark>90</mark>	85.184(2)	<mark>108.738(3)</mark>
V (Å ³)	6471.5(4)	<mark>13669.5(2)</mark>	2746.7(1)	<mark>4924.1(3)</mark>
Ζ	1	<mark>4</mark>	1	2
D _{calc} (g/cm ³)	1.224	<mark>1.347</mark>	1.338	<mark>1.261</mark>
μ (mm⁻¹)	2.200	<mark>4.117</mark>	1.750	<mark>1.938</mark>
F (000)	2432	<mark>5704</mark>	1146	<mark>1928</mark>
ϑ range (°)	2.79 - 25.00	<mark>3.06-76.48</mark>	3.30-26.37	<mark>2.79-26.37</mark>
Collected	78070	<mark>92525</mark>	28571	<mark>62644</mark>
Unique reflns	22765	<mark>27335</mark>	11189	<mark>20109</mark>
R	0.0370	<mark>0.0326</mark>	0.0357	<mark>0.0643</mark>
wR	0.0915	<mark>0.0795</mark>	0.0791	<mark>0.1337</mark>
R _{int}	0.0407	<mark>0.0377</mark>	0.0612	<mark>0.0782</mark>
GOF	1.064	<mark>1.014</mark>	1.0692	<mark>1.096</mark>
peak/hole		1 000 1 000		4 323 4 433
(e/ų)	1.391, -1.113	1.090, -1.010	2.149, -1.076	1.320, -1.180

Table 1 Crystallographic Data for Complexes 1-4

Figure 1 ORTEP diagram of complex **1** with the probability ellipsoids drawn at the 20 % level, carbon atoms on the isopropyl of **HL** and hydrogen atoms are omitted for clarity.

Yb(1)-O(1)	2.333(4)	Yb(1)-O(2)	2.354(3)
Yb(1)-O(3)	2.383(2)	Yb(2)-O(1)	2.486(3)
Yb(2)-N(1)	2.445(5)	Yb(2)-O(2)	2.426(4)
Yb(2)-N(2)	2.493(4)	Yb(2)-O(3)	2.454(3)
Yb(2)-N(3)	2.443(4)	C(1)-N(1)	1.297(6)
C(1)-O(1)	1.302(7)	C(20)-O(2)	1.294(5)
C(20)-N(2)	1.311(7)	C(39)-N(3)	1.289(7)
C(39)-O(3)	1.300(4)		
O(1)-Yb(1)-O(2)	79.18(10)	O(1)-Yb(1)-O(3)	79.16(10)
O(2)-Yb(1)-O(3)	75.06(10)	O(1)-Yb(2)-N(1)	53.73(12)
O(2)-Yb(2)-N(2)	53.94(12)	O(3)-Yb(2)-N(3)	54.10(12)
O(1)-C(1)-N(1)	118.03(43)	O(2)-C(20)-N(2)	117.92(41)
O(3)-C(39)-N(3)	118.64(41)	N(1)-Yb(2)-N(3)	110.25(15)
N(2)-Yb(2)-N(3)	127.82(14)	N(1)-Yb(2)-N(2)	119.01(14)
O(2)-Yb(1)-O(2A)	180(0)	Yb(1)-O(2)-Yb(2)	90.16(14)
Yb(1)-O(1)-Yb(2)	89.19(14)	Yb(1)-O(3)-Yb(2)	88.82(7)

Table 2 Selected bond lengths (Å) and bond angles (°) for complex 1

Figure 2 ORTEP diagram of complex **2** with the probability ellipsoids drawn at the 20 % level, carbon atoms on the isopropyl of **HL** and hydrogen atoms are omitted for clarity.

Yb(1)-N(8)	2.237(3)	Yb(1)-O(2)	2.244(2)
Yb(1)-O(3)	2.283(2)	Yb(1)-N(3)	2.364(2)
Yb(1)-C(77)	2.369(3)	Yb(1)-N(4)	2.386(3)
Yb(1)-O(4)	2.409(2)	Yb(2)-N(9)	2.235(3)
Yb(2)-O(4)	2.251(2)	Yb(2)-O(1)	1.318(4)
Yb(2)-C(77)	2.365(3)	Yb(2)-N(1)	2.372(3)
Yb(2)-O(2)	2.392(2)	Yb(2)-N(2)	2.401(3)
Yb(3)-O(5)	2.202(2)	Yb(3)-O(6)	2.236(2)
Yb(3)-O(7)	2.308(2)	Yb(3)-O(8)	2.317(2)
Yb(3)-N(7)	2.340(3)	Yb(3)-N(6)	2.381(3)
Yb(3)-N(5)	2.524(3)	O(1)-C(1)	1.289(4)
O(2)-C(20)	1.310(3)	O(3)-C(39)	1.293(4)
O(4)-C(58)	1.307(4)	O(5)-C(84)	1.298(4)
O(6)-C(103)	1.292(4)	O(7)-C(122)	1.286(4)
N(1)-C(1)	1.316(4)	N(2)-C(20)	1.300(4)
N(3)-C(39)	1.327(4)	N(4)-C(58)	1.302(4)
N(5)-C(84)	1.313(4)	N(6)-C(103)	1.321(4)

Table 3 Selected bond lengths (Å) and bond angles (°) for complex ${\bf 2}$

N(7)-C(122)	1.306(4)	N(8)-C(77)	1.332(4)
N(8)-C(78)	1.478(4)	N(9)-C(77)	1.326(4)
N(9)-C(81)	1.478(4)		
N(8)-Yb(1)-C(77)	33.47(10)	N(9)-Yb(2)-C(77)	33.34(10)
N(9)-C(77)-N(8)	138.1(3)	N(9)-C(77)-Yb(2)	67.92(17)
N(8)-C(77)-Yb(2)	153.6(2)	N(9)-C(77)-Yb(1)	153.4(2)
N(8)-C(77)-Yb(1)	67.82(17)	Yb(2)-C(77)-Yb(1)	86.98(10)

Figure 3 ORTEP diagram of complex **3** with the probability ellipsoids drawn at the 20 % level, carbon atoms on the isopropyl of **HL** and hydrogen atoms are omitted for clarity.

Yb(1)-O(2)	2.175(2)	Yb(1)-O(1)	2.223(2)
Yb(1)-O(3)	2.310(2)	Yb(1)-O(3A)	2.358(2)
Yb(1)-N(3)	2.474(3)	Yb(1)-N(1)	2.482(3)
Yb(1)-N(2)	2.521(3)	O(1)-C(1)	1.302(4)
O(2)-C(20)	1.292(4)	O(3)-C(39)	1.318(4)
N(1)-C(1)	1.303(5)	N(2)-C(20)	1.318(4)
N(3)-C(39)	1.293(4)		
O(2)-Yb(1)-O(1)	111.46(9)	O(2)-Yb(1)-O(3)	113.37(10)
O(1)-Yb(1)-O(3)	113.09(8)	O(2)-Yb(1)-O(3A)	78.60(8)

Table 4 Selected bond lengths (Å) and bond angles (°) for complex 3

O(1)-Yb(1)-O(3A)	80.69(8)	O(3)-Yb(1)-O(3A)	66.59(8)
O(2)-Yb(1)-N(3)	150.85(9)	O(1)-Yb(1)-N(3)	96.67(9)
O(3)-Yb(1)-N(3)	54.89(8)	O(3A)-Yb(1)-N(3)	114.75(8)
O(2)-Yb(1)-N(1)	93.46(10)	O(1)-Yb(1)-N(1)	55.80(9)
O(3)-Yb(1)-N(1)	149.65(9)	O(3A)-Yb(1)-N(1)	129.46(9)
N(3)-Yb(1)-N(1)	96.25(10)	O(2)-Yb(1)-N(2)	55.47(9)
O(1)-Yb(1)-N(2)	149.97(9)	O(3)-Yb(1)-N(2)	96.47(9)
O(3A)-Yb(1)-N(2)	117.77(9)	N(3)-Yb(1)-N(2)	96.13(9)
N(1)-Yb(1)-N(2)	95.84(9)	C(1)-O(1)-Yb(1)	99.8(2)
C(20)-O(2)-Yb(1)	102.8(2)	C(39)-O(3)-Yb(1)	98.18(18)
C(39)-O(3)-Yb(1A)	136.4(2)	Yb(1)-O(3)-Yb(1A)	113.41(8)
O(1)-C(1)-N(1)	116.4(3)	O(2)-C(20)-N(2)	115.5(3)
N(3)-C(39)-O(3)	115.6(3)		

Figure 4 ORTEP diagram of complex **4** with the probability ellipsoids drawn at the 20 % level, carbon atoms on the isopropyl of **HL** and hydrogen atoms are omitted for clarity.

Yb(1)-O(1)	2.385(5)	Yb(1)-O(2)	2.250(5)	
Yb(1)-O(3)	2.280(6)	Yb(1)-N(1)	2.369(6)	
Yb(1)-N(3)	2.380(7)	Yb(2)-N(5)	2.227(7)	
Yb(1)-N(6)	2.220(7)	Yb(1)-C(77)	2.365(9)	

Table 5 Selected bond lengths (Å) and bond angles (°) for complex 4

Yb(2)-C(77)	2.369(8)	Yb(2)-O(1)	2.253(5)
Yb(2)-O(2)	2.394(5)	Yb(2)-O(4)	2.266(5)
Yb(2)-N(2)	2.414(6)	Yb(2)-N(4)	2.383(6)
O(1)-C(1)	1.313(9)	O(2)-C(20)	1.318(9)
O(3)-C(39)	1.293(9)	O(4)-C(58)	1.288(10)
N(1)-C(1)	1.300(9)	N(2)-C(20)	1.284(10)
N(3)-C(39)	1.311(11)	N(4)-C(58)	1.320(11)
N(5)-C(77)	1.339(11)	N(6)-C(77)	1.317(10)
N(6)-Yb(1)-O(2)	102.9(2)	N(6)-Yb(1)-O(3)	158.6(2)
O(2)-Yb(1)-O(3)	83.26(19)	N(6)-Yb(1)-C(77)	33.2(2)
O(2)-Yb(1)-C(77)	80.1(2)	O(3)-Yb(1)-C(77)	163.0(2)
N(6)-Yb(1)-N(1)	104.1(2)	O(2)-Yb(1)-N(1)	125.3(2)
O(3)-Yb(1)-N(1)	88.1(2)	C(77)-Yb(1)-N(1)	98.6(3)
N(6)-Yb(1)-N(3)	102.9(2)	O(2)-Yb(1)-N(3)	112.5(2)
O(3)-Yb(1)-N(3),	56.3(2)	C(77)-Yb(1)-N(3)	134.6(3)
N(3)-Yb(1)-N(1)	106.4(2)	N(6)-Yb(1)-O(1)	55.47(9)
O(2)-Yb(1)-O(1)	72.00(17)	O(3)-Yb(1)-O(1)	93.89(19)
C(77)-Yb(1)-O(1)	77.7(2)	N(1)-Yb(1)-O(1)	54.85(18)
N(3)-Yb(1)-O(1)	147.4(2)	N(5)-Yb(2)-O(1)	104.2(2)
N(5)-Yb(2)-O(4)	160.0(2)	O(1)-Yb(2)-O(4)	83.47(19)
N(5)-Yb(2)-C(77)	33.7(3)	O(1)-Yb(2)-C(77)	80.2(2)
O(4)-Yb(2)-C(77)	162.9(3)	N(5)-Yb(2)-N(4)	103.5(3)
O(1)-Yb(2)-N(4)	110.9(2)	O(4)-Yb(2)-N(4)	56.6(2)
C(77)-Yb(2)-N(4)	135.0(3)	N(5)-Yb(2)-O(2)	107.0(2)
O(1)-Yb(2)-O(2)	71.79(18)	O(4)-Yb(2)-O(2)	92.99(19)
C(77)-Yb(2)-O(2)	77.2(2)	N(4)-Yb(2)-O(2)	147.7(2)
N(5)-Yb(2)-N(2)	103.0(2)	O(1)-Yb(2)-N(2)	124.8(2)
O(4)-Yb(2)-N(2)	86.8(2)	C(77)-Yb(2)-N(2)	98.4(2)
N(4)-Yb(2)-N(2)	108.0(2)	O(2)-Yb(2)-N(2)	54.6(2)

C(1)-O(1)-Yb(2)	149.7(5)	C(1)-O(1)-Yb(1)	95.0(4)
Yb(2)-O(1)-Yb(1)	89.44(18)	C(20)-O(2)-Yb(1)	150.2(5)
C(20)-O(2)-Yb(2)	94.6(4)	Yb(1)-O(2)-Yb(2)	89.28(17)
C(39)-O(3)-Yb(1)	96.5(5)	C(58)-O(4)-Yb(2)	97.0(5)
C(1)-N(1)-Yb(1)	96.1(5)	C(20)-N(2)-Yb(2)	94.6(5)
C(39)-N(3)-Yb(1)	91.4(5)	C(58)-N(4)-Yb(2)	90.8(5)
C(77)-N(5)-C(78)	126.0(7)	C(77)-N(5)-Yb(2)	79.0(5)
C(77)-N(6)-C(81)	125.9(8)	C(77)-N(6)-Yb(1)	79.5(5)
N(1)-C(1)-O(1)	113.8(7)	N(2)-C(20)-O(2)	116.1(7)
O(3)-C(39)-N(3)	115.3(8)	O(4)-C(58)-N(4)	115.5(7)
N(6)-C(77)-N(5)	139.0(8)	N(6)-C(77)-Yb(1)	67.3(5)
N(5)-C(77)-Yb(1)	153.5(6)	N(6)-C(77)-Yb(2)	153.0(7)
N(5)-C(77)-Yb(2)	67.3(4)	Yb(1)-C(77)-Yb(2)	87.2(3)

Characteristic data:

C₆**H**₅**CONH(2,6**-*i***Pr**₂-**C**₆**H**₃) (HL). (C₁₉H₂₃NO), White solid. Mp. 265.4-265.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 9.75 (br. s, 1H, NH), 8.00 (d, *J* = 8 Hz, 2H, aryl H), 7.60 (t, *J* = 8 Hz, 1H, aryl H), 7.54 (t, *J* = 8 Hz, 2H, aryl H), 7.30 (t, *J* = 8 Hz, 1H, aryl H), 7.20 (d, *J* = 8 Hz, 2H, aryl H), 3.08 (septet, *J* = 8 Hz, 2H,

CH(CH₃)₂), 1.16 (d, *J* = 8 Hz, 6H, CH(CH₃)₂), 1.10 (d, *J* = 8 Hz, 6H, CH(CH₃)₂) ppm. ¹³C NMR (400 MHz, DMSO-*d*₆): δ 166.2, 146.2, 134.4, 132.8, 131.4, 128.4, 127.6, 127.5, 122.9, 28.2, 23.5 ppm.

1,3-diisopropyl-2-phenylguanidine(5a). Colorless solid, Yield: 99%; ¹H NMR (400 MHz, CDCl₃): δ 7.24 (m, 2H, C₆H₅); 6.93 (m, 1H, C₆H₅); 6.86 (d, *J* = 7.6Hz, 2H, C₆H₅); 3.77 (s, 2H, NH); 3.59 (s, 2H, CH(CH₃)₂); 1.17 (d, *J* = 6.4Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 150.4, 129.3, 123.6, 121.4, 43.3, 23.4 ppm.

1,3-diisopropyl-2-*o***-tolylguanidine(5b).** Colorless solid, Yield: 99%; ¹H NMR (400 MHz, CDCl₃): δ 7.14 (d, *J* = 7.4 Hz, 1H, C₆H₄); 7.09 (t, *J* = 7.5 Hz, 1H, C₆H₄); 6.87 (t, *J*

= 7.3 Hz, 1H, C₆H₄); 6.76 (d, J = 7.7 Hz, 1H, C₆H₄); 3.76 (s, 2H, NH); 3.43 (s, 1H, CH); 2.14 (s, 3H, ArCH₃); 1.16 (d, J = 6.4 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 148.9, 148.4, 130.5, 130.4, 126.6, 123.2, 121.8, 43.2, 23.5, 18.1 ppm.

1,3-diisopropyl-2-*m***-tolylguanidine(5c)**. Colorless solid, Yield: 98%; ¹H NMR (400 MHz, CDCl₃): δ 7.11 (t, *J* = 7.6 Hz, 1H, C₆H₄), 6.76 – 6.59 (m, 3H, C₆H₄), 3.75-3.74 (m, 2H, NH), 3.55 (s, 2H, CH), 2.26 (s, 3H, ArCH₃), 1.14 (d, *J* = 6.3 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.3, 150.3, 129.1, 124.5, 122.3,

120.4, 43.4, 23.5, 21.6 ppm.

1,3-diisopropyl-2-p-tolylguanidine(5d). Colorless solid, Yield: 99%; ¹H NMR (400 MHz, CDCl₃): δ 7.05 (d, *J* = 7.6 Hz, 2 H, C₆H₄); 6.74 (d, *J* = 7.7 Hz, 2 H, C₆H₄); 3.76 (br, 2 H, NH); 3.56 (m, 2 H, CH); 2.28 (s, 3 H, ArCH₃); 1.16 (d, *J* = 6.1 Hz, 12 H, CH(CH₃)₂) ppm.¹³C NMR (100 MHz, CDCl₃): δ = 150.6, 147.6, 130.5, 129.9, 123.3,

43.2, 23.4, 20.8 ppm.

1,3-diisopropyl-2-(4-methoxyphenyl)guanidine(5e). Colorless solid, Yield: 97%; ¹H NMR (400 MHz, CDCl₃): δ 6.83–6.76 (m, 4H, C₆H₄); 3.77 (m, 5H, OCH₃, NH); 3.57 (br, 2H, CH); 1.15 (d, *J* = 6.1 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 154.7, 150.9, 143.4, 124.5, 114.8, 55.6, 43.4, 23.6

ppm.

2-(4-fluorophenyl)-1,3-diisopropylguanidine(5f). Colorless solid, Yield: 98%; ¹H NMR (400 MHz, CDCl₃): δ 6.94 (t, *J* = 8.7 Hz, 2H, C₆H₄); 6.78 (m, 2H, C₆H₄); 3.76 (s, 2H, NH); 3.52 (s, 2H, CH); 1.16 (d, *J* = 6.3 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 146.0, 141.8, 124.7, 115.7, 43.2, 23.4

ppm.

2-(4-chlorophenyl)-1,3-diisopropylguanidine(5g). Colorless solid, Yield:

95%; ¹H NMR (400 MHz, CDCl₃): δ7.19 (d, *J* = 8.5 Hz, 2H, C₆H₄); 6.77 (d, *J* = 8.5 Hz, 2H, C₆H₄); 3.75 (br, 2H, NH); 3.60 (br, 2H, CH); 1.16 (d, *J* = 6.3 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.5, 148.9, 129.4, 126.3, 124.7, 43.2, 23.4 ppm

2-(4-bromophenyl)-1,3-diisopropylguanidine(5h). Colorless solid, Yield: 96%; ¹H NMR (400 MHz , CDCl₃): δ7.33 (d, *J* = 8.4 Hz, 2H, C₆H₄); 6.73 (d, *J* = 8.4 Hz, 2H, C₆H₄); 3.76 (m, 2 H, NH); 3.55 (s, 2H, CH); 1.16 (d, *J* = 6.3 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.2, 149.6, 132.2, 125.4,

113.9, 43.2, 23.4 ppm.

2-(2,6-diisopropylphenyl)-1,3-diisopropylguanidine(5i). Colorless solid, Yield: 50%; ¹H NMR (400 MHz, CDCl₃): δ 7.07-7.03(m, 2H, C₆H₃); 6.96-6.90 (m, 1H, C₆H₃); 4.13 (s, 2H, NH); 3.44-3.10 (m, 2H, ArCH); 3.10-3.05 (m, 2H, CH); 1.25-1.04 (m, 24H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 146.7, 143.8, 141.7,

123.0, 122.4, 43.5, 42.3, 28.1, 22.9 ppm.

1,3-diisopropyl-2-(4-nitrophenyl)guanidine(5j). Colorless solid, Yield: 93%; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (d, *J* = 8.9 Hz, 1H, C₆H₄); 6.89 (d, *J* = 8.9 Hz, 2H, C₆H₄); 3.79 (br, 4H, NH, CH); 1.19 (d, *J* = 5.6 Hz, 12H, CH(CH₃)₂) ppm.¹³C NMR (100 MHz, CDCl₃): δ 158.3, 150.4, 140.9, 125.6, 122.8, 43.3, 23.2 ppm.

2-(3,5-bis(trifluoromethyl)phenyl)-1,3-diisopropylguanidine(5k). Colorless solid, Yield: 98%; ¹H NMR (400 MHz, CDCl₃): δ 7.37 (s, 1H, C₆H₃), 7.28 (s, 2H, C₆H₃), 3.78 (dq, *J* = 12.8, 6.5 Hz, 2H, NH), 3.61 (d, *J* = 7.4 Hz, 2H, CH), 1.19 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 152.2, 150.6, 132.7, 132.4, 132.1, 131.7, 127.6, 124.9, 123.4, 122.2, 119.5, 113.9, 43.3, 23.2 ppm.

1,3-diisopropyl-2-(pyridin-2-yl)guanidine(5l). Colorless solid, Yield: 97%; ¹H NMR

(400 MHz, CDCl₃): δ 8.07 (dd, *J* = 5.1, 1.4 Hz, 1H, PyH); 7.42 (ddd, *J* = 8.4, 7.1, 2.1 Hz, 1H, PyH); 6.83 (d, *J* = 8.3 Hz, 1H, PyH); 6.61 (ddd, *J* = 7.0, 5.1, 1.0 Hz, 1H, PyH); 3.93 (d, *J* = 4.5 Hz, 2H, CH); 1.25 (d, *J* = 6.4 Hz, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 163.6, 153.8, 136.7, 120.3, 114.0, 42.6, 23.5 ppm.

N,N'-bis(1-methylethyl)-1-piperidinecarboximidamide(5m). Colorless solid, Yield: 90%; ¹H NMR (400 MHz, CDCl₃): δ 3.36 (m, 2H, CH), 3.04 (br, 4H, CH₂), 1.52 (br, 6H, CH₂), 1.09 (m, 12H, CH(CH₃)₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 162.0, 49.1, 46.6, 26.0, 24.9, 24.0 ppm.

N,N'-diisopropylpyrrolidine-1-carboximidamide(5n). Colorless solid, Yield: 86%; ¹H NMR (400 MHz, CDCl₃): δ 3.39(m, 2H, CH); 3.76(m, 4H, CH₂); 1.80 (m, 4H, CH₂); 1.11 (d, *J* = 6.4 Hz, 12H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 153.6, 47.9, 46.6, 25.1, 24.6 ppm.

N,N'-diisopropylindoline-1-carboximidamide(5o). Colorless solid, Yield: 93%; ¹H NMR (400 MHz, CDCl₃): δ 7.19-6.73 (m, 4H, ArH), 3.88-3.78 (m, 4H, CH₂), 3.45-3.44 (m, 2H, CH), 2.99-2.95 (m, 2H, CH₂), 1.15-1.13 (m, 12H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 149.3, 146.1, 131.0, 126.6, 124.0, 119.0, 111.0, 50.1, 46.7, 45.2, 27.3, 24.4, 23.4 ppm.

N1,N'1,N4,N'4-tetraisopropylpiperazine-1,4-bis(carboximidamide)(5p). Colorless solid, Yield: 88%; ¹H NMR (400 MHz, CDCl₃): δ 3.51-3.34 (m, 2H, CH), 3.31-3.17 (m, 2H, CH), 3.01 (s, 8H, CH₂), 1.03 (d, *J* = 5.5Hz, 24H, CH₃) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 155.2, 47.8, 46.6, 45.6, 24.3, 23.2 ppm.

1,3-dicyclohexyl-2-phenylguanidine(5q). Colorless solid, Yield: 99%; ¹H NMR (400 MHz, CDCl₃): δ 7.25 – 7.21 (m, 2H, C₆H₅); 6.95 – 6.95 – 6.89 (m, 1H, C₆H₅); 6.88 – 6.86 (m, 2H, C₆H₅); 3.65 (s, 2H, NH); 3.42 (s, 2H, CH); 2.01 – 1.12 (m, 20H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 150.7, 129.5, 123.9, 121.6, 50.5, 34.1,

1,3-dicyclohexyl-2-o-tolylguanidine(5r). Colorless solid, Yield: 97%; ¹H NMR (400 MHz, CDCl₃): δ 6.93 (m, 2H, C₆H₄); 6.78 (m, 2H, C₆H₄); 3.62 (br, 2H, NH); 3.40 (br, 2H, CH); 2.00(s, 3H, CH₃); 1.97-1.03 (m, 20H, CH₂) ppm. ¹³CNMR (100 MHz, CDCl₃): δ 148.94, 148.70, 131.86, 130.60, 126.84, 123.48, 121.88, 50.40, 34.18, 25.94, 25.22, 18.41 ppm.

1,3-dicyclohexyl-2-(4-fluorophenyl)guanidine(5s). Colorless solid, Yield: 99%; ¹H NMR (400 MHz, CDCl₃): δ 6.94 – 6.90 (m, 2 H, C₆H₄); 6.77 – 6.73 (m, 2 H, C₆H₄); 3.59 (s, 2 H, NH); 3.38 – 3.36 (m, 2 H, CH); 1.99 – 1.03 (m, 20 H, CH₂) ppm.¹³C NMR (100 MHz, CDCl₃): δ 150.6, 124.9, 124.8, 116.1, 115.9, 50.4, 34.1, 25.9, 25.2 ppm.

2-(2-chlorophenyl)-1,3-dicyclohexylguanidine(5t). Colorless solid, Yield: 98%; ¹H NMR (400 MHz, CDCl₃): δ 7.34 – 7.33 (m, 1H, C₆H₄), 7.15 – 7.11(m, 1H, C₆H₄); 6.92 – 6.85 (m, 2H, C₆H₄); 3.56 (s, 2H, NH); 3.42 (s, 2H, CH); 2.05 – 1.06(m, 20H, CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 150.1, 147.6, 130.1, 128.7, 127.8, 125.6, 122.6, 50.5, 34.1, 26.0, 25.2 ppm. ^1H NMR and ^{13}C NMR spectra of complex $\boldsymbol{1}$

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of \mathbf{HL}

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR and ¹³C NMR spectra of **5a**

^1H NMR and ^{13}C NMR spectra of 5b

¹H NMR and ¹³C NMR spectra of **5c**

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5d}$

¹H NMR and ¹³C NMR spectra of **5e**

S18

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5f}$

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5g}$

$^1\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5h}$

¹H NMR and ¹³C NMR spectra of **5**i

¹H NMR and ¹³C NMR spectra of **5**j

 $^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5k}$

¹H NMR and ¹³C NMR spectra of **5**l

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of 5m

¹H NMR and ¹³C NMR spectra of **5n**

¹H NMR and ¹³C NMR spectra of **50**

¹H NMR and ¹³C NMR spectra of **5p**

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5r}$

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5s}$

$^{1}\mathrm{H}$ NMR and $^{13}\mathrm{C}$ NMR spectra of $\mathbf{5t}$

