Supporting Information for

Molecular rare earth metal alumosilicates.

Raul Huerta-Lavorie,^{a,b,*} Dana V. Báez-Rodríguez,^a Jessica García-Ríos,^a Emiliano Martínez-Vollbert,^a Diego Martínez-Otero^a and Vojtech Jancik^{a,*}

^aCentro Conjunto de Investigación en Química Sustentable UAEM-UNAM, Car. Toluca-Atlacomulco km. 14.5, Toluca 50200, Estado de México, México.

E-mail: rhuertal@berkeley.edu, vjancik@unam.mx;

^bCurrently at Department of Chemistry, University of California at Berkeley, Berkeley, California, 94720-1460, USA.

Figure *S1*. ¹H NMR of **2**.

Figure S2. ¹H NMR of **3**.

Figure S4. ¹H NMR of **5**.

ppm 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 -22 -24 -26

Figure S5. ¹H NMR of 6.

ppm 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45

ppm 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35

Figure *S***7**. ¹H NMR of 9.

Continuous Symmetry and Shape Measures analysis of compound 4

The coordination geometry of Sm1 was calculated using the SHAPE 2.0¹ based on the Continuous Symmetry and Shape Measures (CSM and CShM, respectively) proposed by Avnir *et al.*² that considers distortion paths between two ideal symmetries. As a first approach X-ray coordinates of the atom are used to evaluate the deviation of its geometry from the ideal symmetries: square S(SP–4), sawhorse S(SS–4), and tetrahedral S(T– 4). Then the deviation from the ideal distortion path between the desired polyhedra is calculated [Δ (T–4, SP–4) $\leq 15\%$ is considered reliable]. Finally, the distortion of the atom is calculated considering it as a percentage using the general coordinate of distortion among the selected ideal polyhedra φ (SP–4 \rightarrow T–4).³

Table S1. Values of S(SP-4), S(SS-4), S(T-4), Δ (T-4, SP-4), and (ϕ (T-4 \rightarrow SP-4) for Sm1 in 4.

	1a _{Sm(1)Cp}
S(SP-4) ^[a]	4.49
$S(SS-4)^{[b]}$	9.58
$S(T-4)^{[c]}$	18.26
$\Delta(T-4, SP-4)^{[d]}$	6.4
$\varphi(\text{SP-4} \rightarrow \text{T-4})^{[e]}$	34.7

[a] S(SP-4) = square, [b] S(SS-4) = sawhorse, [c] S(T-4) = tetrahedral, [d] $\Delta(T-4, SP-4) = distortion$ path deviation, [e] ($\phi(SP-4 \rightarrow T-4) = general coordinate of distortion$, where SP-4 (0%) y T-4 (100%).

	2	3	4	5	6	7	8	9
Ln–O(Al)			2.123(2)	2.383(1)	2.372(1)	2.364(1)	2.346(1)	2.331(1)
Ln–O(Si)	2.522(1)	2.548(1)	2.394(2),	2.127(1)	2.108(1)	2.095(1)	2.092(1)	2.085(1)
			2.327(2)					
Ln–Cp ^[a]	2.522(1)	2.561(1)	2.460(2)	2.480(1)	2.447(1)	2.398(1)	2.368(1)	2.390(1)
Al–X(Ln)	1.733(1)	1.732(1)	1.703(2) ^[a]	1.785(1)	1.785(1)	1.784(1)	1.785(1)	1.787(1)
Al-O(Si)	1.725(1)	1.726(1)	1.740(2) ^[a]	1.703(1)	1.705(1)	1.706(1)	1.704(1)	1.704(1)
Al–N ^[a]	1.884(1)	1.884(1)	1.917(2)	1.909(1)	1.907(1)	1.907(1)	1.906(1)	1.909(1)
Si–O(Ln)	1.671(1)	1.669(1)	1.631(2) ^[a]	1.600(1)	1.601(1)	1.600(1)	1.598(1)	1.598(1)
Si–O(Al)	1.610(1)	1.610(1)	1.618(2) ^[a]	1.644(1)	1.643(1)	1.640(1)	1.639(1)	1.639(1)
Si–O ^t Bu ^[a]	1.629(1)	1.628(1)	1.637(2)	1.638(1)	1.640(1)	1.637(1)	1.636(1)	1.638(1)

Table S2. Selected bond lengths (Å) in compounds 2-9.

[a] Average distances.

	2	3	4	5	6	7	8	9
Al-O-Si	133.3(1)	133.2(1)	134.0(1)	139.2(1)	138.1(1)	138.4(1)	138.6(1)	138.3(1)
Al-O-Ln	128.3(1)	128.5(1)	133.8(1),	133.2(1)	133.9(1)	133.4(1)	133.4(1)	133.3(1)
			135.3(1)					
Ln-O-Si	141.8(1)	141.6(1)	122.0(1),	140.8(1)	140.4(1)	141.1(1)	140.8(1)	140.5(1)
			131.4(1)					
Ln-O-Ln			106.6(1)					
(Si)O-Ln-O(Al)			90.4(1)	84.8(1)	84.1(1)	84.8(1)	85.3(2)	85.5(1)
(Si)O-Ln-O(Si)			74.4(1)					
(Si)O-Al-O	103.3(1)	103.3(1)	111.2(1) ^[a]	105.1(1)	105.2(1)	105.1(1)	105.1(1)	105.1(1)
(Al)O-Si-O(Ln)	107.4(1)	107.3(1)	112.6(1) ^[a]	111.4(1)	111.5(1)	111.4(1)	111.3(1)	111.4(1)

Table *S***3.** Selected bond angles (°) in compounds 2 - 9.

[a] Average angles.

References

(1) **SHAPE 2.0** Program for the Stereochemical Analysis of Molecular Fragments by Means of Continuous Shape Measures and Associated Tools: M. Llunell, D. Casanova, J. Cirera, P. Alemany, and S. Alvarez Universitat de Barcelona, Barcelona, España 2010.

(2) H. Zabrodsky, S. Peleg, D. Avnir, *J. Am. Chem. Soc.* 1992, **114**, 7843–7851; b) S. Alvarez, P. Alemany, D. Casanova, J. Cirera, M. Llunell and D. Avnir, Coord. *Chem. Rev.* 2005, **249**, 1693–1708.

(3) J. Cirera, P. Alemany, S. Alvarez, Chem. Eur. J. 2004, 10, 190 – 207.