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Scheme S1. Schematic illustration of Ag@Au nanoprisms-metal-organic frameworks 

based paper for glucose sensing.
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Fig. S1 The histogram analysis of the Ag@Au nanoprism. Histogram showing the 
particle size distributions of (a) Ag@Au nanoprism and (b) Au nanoparticles was 
constructed on the basis of six TEM photographs, and a total of ~60 prisms (~160 
particles) were used in this histogram.
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Fig. S2 The optical image (scale bar: 200 m) and SEM image of Ir-Zne.s1
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Fig. S3 Effect of the volume of Ag@Au nanoprisms on the relative emission 
enhancement intensity. Data were obtained from an average value of three replicate 
measurements.
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Fig. S4 Effect of the absorbance at λ = 522 nm of Ag@Au nanoprisms on the relative 
emission enhancement intensity. Data were obtained from an average value of three 
replicate measurements. 
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Fig. S5 Effect of concentration of the buffer on the relative emission intensity of 
Ag@Au-Ir–Zne MOFs on paper upon exposure to 5 mM glucose. Data were obtained 
from an average value of three replicate measurements. 
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Fig. S6 Effect of pH value of the buffer on the relative emission intensity of Ag@Au-
Ir–Zne MOFs on paper upon exposure to 5 mM glucose. Data were obtained from an 
average value of three replicate measurements.
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Fig. S7 Effect of concentration of the enzyme on the relative emission intensity of 
Ag@Au-Ir–Zne MOFs on paper upon exposure to 5 mM glucose. Data were obtained 
from an average value of three replicate measurements. 
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Fig. S8 Effect of content of calcium chloride on the relative emission intensity of 
Ag@Au-Ir–Zne MOFs on paper upon exposure to 5 mM glucose. Data were obtained 
from an average value of three replicate measurements. 
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Fig. S9 The relative changes in emission intensity of MOFs (without Ag@Au 
nanoprisms) on paper (blue, ---), small Ag-Ir–Zne MOFs on paper (olive, -○-), of big 
Ag-Ir–Zne MOFs on paper (purple, -▓-), and of Ag@Au-Ir–Zne MOFs on paper (red, 
-●-) upon exposure to 3 mM glucose. 



S-12

Fig. S10 Storage stability of the biosensor. 
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Fig. S11 Scheme of the setup used for the measurement. 
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Table S1. Comparison of optical methods using nanoparticles for glucose detection.

Nanomaterials Phenomenon Linear response 
range

       LOD Response 
time

Ref.

CdTe/ZnTe/ZnS QDs Fluorescence quenched 0.4 ~ 20.0 mM m N.A.a Wu et al. (2010)s2

AgNP-CdSe QDsb Fluorescence quenched 2 ~ 52 mM m N.A.a  Tang et al. 
(2014)s3

CdTe/CdS QDs-PtF20TPPc Fluorescence enhanced 0 ~ 0.6 mM A 5 min  Wang et 
al.(2009)s4

TiO2/SiO2 Phosphorescence 
quenched

1 nM ~ 10 mM n < 6 s Li et al. 
(2009)s5

Europium(III) doped Silica NPsdFluorescence enhanced 0 ~ 1.0 mM  < 20 min  Gao et al. 
(2010)s6,s7

Mn-doped ZnS QDs Phosphorescence 
quenched

0.01 ~ 0.1 mM

0.1  ~ 1.0 mM

 N.A.[a]  Wu et al. 
(2010)s8

CdTe  QDs Fluorescence quenched 0.5 ~ 1.0 mM m 5 min Li et al. (2009)s9

CdTe QDs-Au NPse Fluorescence enhanced 0.0001 ~ 0.05 mM n N.A.a  Tang et al. 
(2008)s10

Carbon Dots Fluorescence quenched 0.009 ~ 0.9 mM  60 min Xia et al. 
(2014)s11

Ag/Au nanoprisms Colorimetry 0.0002 ~ 0.1 mM  40 min Xia et al. 
(2013)s12

Ag@Au nanoprisms Phosphorescence 
enhanced

0.05 ~ 30 mM m < 0.5 s This work

a N.A. = Not Available. b AgNP-CdSe QDs = CdSe QDs assembled on Ag NPs. c CdTe/CdS QDs-PtF20TPP = CdSe QDs as one layer and platinum-

porphyrin as the another layer.  d  Europium(III) doped Silica NPs = Eu(TTA)3phen (TTA: 2-thenoyltrifluoroacetone, phen: 1,10-phenanthroline) doped 

Silica NPs. e  CdTe QDs-Au NPs = CdTe QDs-concanavalin A (ConA)-β-cyclodextrins(CDs)-AuNPs.
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