Supporting Information

Ag@Aunanoprisms-metalorganicframeworks-based paper for extending glucosesensing range in human serum and urine

Pin-Hsuan Huang,^a Chia Ping Hong,^a Jian Fan Zhu,^a Tzu-Ting Chen,^a Chu-Ting Chan,^a Yu-Chien Ko,^a Tien-Li Lin, ^a Zheng-Bang Pan, ^a Ning-Kuei Sun, ^a Ying-Chu Wang, ^a Jong-Jheng Luo, ^a Tzu-Chieh Lin,^b Chia-Cheng Kang,^{*b} Jing-Jong Shyue^{c*} and Mei-Lin Ho^{*a}

^{*a} Department of Chemistry, Soochow University, No 70, LinShih Rd., Shih-Lin,

Taipei 11102, Taiwan.

*b Department of Chemistry, Fu Jen Catholic University, No 510, Zhongzheng Rd.,

Xinzhuang Dist., New Taipei City 24205 Taiwan.

^c Research Center for Applied Science, Academia Sinica, Taipei 115, Taiwan.

Supplementary materials:

Scheme S1. Schematic illustration of Ag@Au nanoprisms-metal-organic frameworks based paper for glucose sensing.

Fig. S1 The histogram analysis of the Ag@Au nanoprism. Histogram showing the particle size distributions of (a) Ag@Au nanoprism and (b) Au nanoparticles was constructed on the basis of six TEM photographs, and a total of ~60 prisms (~160 particles) were used in this histogram.

Fig. S2 The optical image (scale bar: 200 $\mu m)$ and SEM image of Ir-Zn_e.^{s1}

Fig. S3 Effect of the volume of Ag@Au nanoprisms on the relative emission enhancement intensity. Data were obtained from an average value of three replicate measurements.

Fig. S4 Effect of the absorbance at $\lambda = 522$ nm of Ag@Au nanoprisms on the relative emission enhancement intensity. Data were obtained from an average value of three replicate measurements.

Fig. S5 Effect of concentration of the buffer on the relative emission intensity of $Ag@Au-Ir-Zn_e$ MOFs on paper upon exposure to 5 mM glucose. Data were obtained from an average value of three replicate measurements.

Fig. S6 Effect of pH value of the buffer on the relative emission intensity of Ag@Au-Ir–Zn_e MOFs on paper upon exposure to 5 mM glucose. Data were obtained from an average value of three replicate measurements.

Fig. S7 Effect of concentration of the enzyme on the relative emission intensity of $Ag@Au-Ir-Zn_e$ MOFs on paper upon exposure to 5 mM glucose. Data were obtained from an average value of three replicate measurements.

Fig. S8 Effect of content of calcium chloride on the relative emission intensity of $Ag@Au-Ir-Zn_e$ MOFs on paper upon exposure to 5 mM glucose. Data were obtained from an average value of three replicate measurements.

Fig. S9 The relative changes in emission intensity of MOFs (without Ag@Au nanoprisms) on paper (blue, ---), small Ag-Ir–Zn_e MOFs on paper (olive, - \bigcirc -), of big Ag-Ir–Zn_e MOFs on paper (purple, - \blacksquare -), and of Ag@Au-Ir–Zn_e MOFs on paper (red, - \bullet -) upon exposure to 3 mM glucose.

Fig. S10 Storage stability of the biosensor.

Fig. S11 Scheme of the setup used for the measurement.

	iter includes using nump	giucose del			[
Nanomaterials	Phenomenon	Linear response range	LOD	Response time	Ref.
CdTe/ZnTe/ZnS QDs	Fluorescence quenched	$0.4\sim 20.0\ mM$	0.05 mM	N.A.ª	Wu et al. (2010) ^{s2}
AgNP-CdSe QDs⁵	Fluorescence quenched	$2 \sim 52 \text{ mM}$	1.86 mM	N.A.ª	Tang <i>et al.</i> (2014) ^{s3}
CdTe/CdS QDs-PtF ₂₀ TPP ^c	Fluorescence enhanced	0~0.6 mM	N.A. ^α	5 min	Wang <i>et</i> <i>al</i> .(2009) ^{s4}
TiO ₂ /SiO ₂	Phosphorescence quenched	1 nM ~ 10 mM	0.12 nM	< 6 s	Li <i>et al.</i> (2009) ^{s5}
uropium(III) doped Silica NP	Fluorescence enhanced	0 ~ 1.0 mM	4.4 μΜ	< 20 min	Gao <i>et al.</i> (2010) ^{s6,s7}
Mn-doped ZnS QDs	Phosphorescence quenched	$\begin{array}{ll} 0.01\sim 0.1\mbox{ mM}\\ 0.1\ \ \sim 1.0\mbox{ mM} \end{array}$	3.0 µM	N.A. ^[a]	Wu <i>et al.</i> (2010) ^{\$8}
CdTe QDs	Fluorescence quenched	$0.5 \sim 1.0 \ mM$	0.5 mM	5 min	Li <i>et al.</i> (2009) ^{s9}
CdTe QDs-Au NPs ^e	Fluorescence enhanced	0.0001 ~ 0.05 mM	50 nM	N.A.ª	Tang <i>et al.</i> (2008) ^{s10}
Carbon Dots	Fluorescence quenched	0.009 ~ 0.9 mM	1.5 μM	60 min	Xia <i>et al.</i> (2014) ^{s11}
Ag/Au nanoprisms	Colorimetry	0.0002 ~ 0.1 mM	0.2 μΜ	40 min	Xia <i>et al.</i> (2013) ^{s12}
Ag@Au nanoprisms	Phosphorescence enhanced	$0.05\sim 30\ mM$	0.038 mM	< 0.5 s	This work

Table S1. Comparison of optical methods using nanoparticles for glucose detection.

^{*a*} N.A. = Not Available. ^{*b*} AgNP-CdSe QDs = CdSe QDs assembled on Ag NPs. ^{*c*} CdTe/CdS QDs-PtF₂₀TPP = CdSe QDs as one layer and platinumporphyrin as the another layer. ^{*d*} Europium(III) doped Silica NPs = Eu(TTA)₃phen (TTA: 2-thenoyltrifluoroacetone, phen: 1,10-phenanthroline) doped Silica NPs. ^{*e*} CdTe QDs-Au NPs = CdTe QDs-concanavalin A (ConA)- β -cyclodextrins(CDs)-AuNPs.

Chuang, G.-Y. Lin, C.-W. Ni, Y.-T. Zeng and M.-L. Ho, *Dalton Trans.*, 2014, 43, 6536-6547.

s2 W. Wu, T. Zhou, A. Berliner, P. Banerjee and S. Zhou, *Angew. Chem. Int. Ed.*, 2010, **49**, 6554-6558.

s3 Y. Tang, Q. Yang, T. Wu, L. Liu, Y. Ding and B. Yu, *Langmuir*, 2014, **30**, 6324-6330.

s4 X.-d. Wang, H.-x. Chen, T.-y. Zhou, Z.-j. Lin, J.-b. Zheng, Z.-x. Xie, X. Chen, K.y. Wong, G.-n. Chen and X.-r. Wang, *Biosens. Bioelectron.*, 2009, **24**, 3702-3705.

s5 Y. Li, X. Liu, H. Yuan and D. Xiao, *Biosens. Bioelectron.*, 2009, 24, 3706-3710.

s6 F. Gao, F. Luo, X. Chen, W. Yao, J. Yin, Z. Yao and L. Wang, *Talanta*, 2009, **80**, 202-206.

s7 K.J. Cash and H.A. Clark, *Trends Mol Med.*, 2010, 16, 584-593.

s8 P. Wu, Y. He, H.-F. Wang and X.-P. Yan, Anal. Chem., 2010, 82, 1427-1433.

s9 X. Li, Y. Zhou, Z. Zheng, X. Yue, Z. Dai, S. Liu and Z. Tang, *Langmuir*, 2009, **25**, 6580-6586.

s10 B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li and L. Yu, Chemistry, 2008, 14, 3637-3644.

s11 P. Shen and Y. Xia, Anal. Chem., 2014, 86, 5323-5329.

s12 Y. Xia, J. Ye, K. Tan, J. Wang and G. Yang, Anal. Chem., 2013, 85, 6241-6247.