Supplementary information

Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting

Supphasin Thaweesak,^a Songcan Wang,^a Miaoqiang Lyu,^a Mu Xiao,^a Piangjai Peerakiatkhajohn,^{a, b} and Lianzhou Wang*^a

^{a.} Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia

Email address: <u>I.wang@uq.edu.au</u> (L. Wang)

^{b.} Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakorn Pathom, 73170, Thailand

Supporting Information Figure

Fig. S1. The BET surface area calculated from nitrogen adsorption-desorption isotherms. (a) $g-C_3N_4$ bulk, (b) $g-C_3N_4$ nanosheets, (c) $1at\%B-g-C_3N_4$ bulk, and (d) $1at\%B-g-C_3N_4$ nanosheets.

Fig. S2. Mott-Schottky plot of 1at%B-g-C₃N₄ nanosheets in 0.2 M Na₂SO₄ aqueous solution. The Flat band potential of 1at.%B-g-C₃N₄ nanosheets is determined to be 2.05 V vs. Ag/AgCl at pH = 6.6, which correspond to 2.05 V vs. NHE at pH= 0.