ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Speciation in human blood of Metvan, a vanadium based potential anti-tumor drug

Daniele Sanna,^a Valeria Ugone,^b Giovanni Micera,^b Péter Buglyó,^c Linda Bíró,^c Eugenio Garribba,*^b

- ^a Istituto CNR di Chimica Biomolecolare, Trav. La Crucca 3, I-07040 Sassari, Italy
- ^b Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, I-07100 Sassari, Italy. E-mail: garribba@uniss.it; Tel: +39 079 229487.
- ^c Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary

Figure S1. Concentration distribution curves of the species formed in the system $V^{IV}O^{2+}/Me_2$ phen with a molar ratio of 1/5 and V concentration of 1.0×10^{-3} M.

Figure S2. High field region of the X-band anisotropic EPR spectra recorded at 120 K as a function of pH in the system $V^{IV}O^{2+}/Me_2$ phen with a molar ratio of 1/5 and V concentration of 1.0×10^{-3} M. The $M_1 = 7/2$ resonance of $[VO(Me_2phen)(H_2O)_3]^{2+}$ (equatorial-equatorial coordination) is indicated with **I**, of $[VO(Me_2phen)(H_2O)_3]^{2+}$ (equatorial-axial coordination) with **II**, of *cis*- $[VO(Me_2phen)_2(H_2O)]^{2+}$ with **III**, and of *cis*- $[VO(Me_2phen)_2(OH)]^+$ with **IV**.

Figure S3. ESI mass spectrum recorded in the positive mode at pH 4.80 in ultrapure LC-MS water in the system $V^{IV}O^{2+}/Me_2$ phen with a molar ratio of 1/2 and V concentration of 1.0×10^{-5} M.

Figure S4. Experimental (a) and calculated (b) isotopic pattern for the peak of $[V^{IV}O(Me_2phen)_2]^{2+}$ revealed at m/z = 241.57 in the positive ESI-MS spectrum recorded on the system $V^{IV}O^{2+}/Me_2phen$ (ultrapure LC-MS water, pH 4.80, molar ratio 1/2, V concentration 1.0×10^{-5} M).

Figure S5. Experimental (a) and calculated (b) isotopic pattern for the peak of $[V^{IV}O(Me_2phen)(OH)]^+$, revealed at m/z = 292.04 in the positive ESI-MS spectrum recorded on the system $V^{IV}O^{2+}/Me_2phen$ (ultrapure LC-MS water, pH 4.80, molar ratio 1/2, V concentration 1.0 × 10⁻⁵ M).

Figure S6. Experimental (a) and calculated (b) isotopic pattern for the peak of $[V^VO_2(Me_2phen)_2]^+$ revealed at m/z = 499.13 in the positive ESI-MS spectrum recorded on the system $V^{IV}O^{2+}/Me_2phen$ (ultrapure LC-MS water, pH 4.80, molar ratio 1/2, V concentration 1.0×10^{-5} M).

Figure S7. ESI-MS/MS spectrum of the fragment $[V^VO_2(Me_2phen)_2]^+$ recorded on the system $V^{IV}O^{2+}/Me_2phen$ (positive ion mode, m/z = 499.5 ± 1.0, ultrapure LC-MS water, pH 4.80, molar ratio 1/2, V concentration 1.0×10^{-5} M).

Figure S8. High field region of the X-band anisotropic EPR spectra recorded at 120 K as a function of pH in the system $V^{IV}O^{2+}/Me_2$ phen/H₃citr with a molar ratio of 1/2/2 and V concentration of 1.0 × 10⁻³ M. The $M_I = 7/2$ resonance of $[VO(\text{citrH})(H_2O)_2]^{2+}$ is indicated with **I**, of $[VO(Me_2\text{phen})(\text{citrH})]$ with **II**, of $[VO(Me_2\text{phen})(\text{citrH})]^-$ with **III** and of $[VO(Me_2\text{phen})(\text{citrH}_{-1})]^{2-}$ with **IV**.

Figure S9. ESI mass spectrum recorded in the negative mode at pH 4.90 in ultrapure LC-MS water in the system $V^{IV}O^{2+}/Me_2$ phen/H₃citr with a molar ratio of 1/2/2 and V concentration of 2.5 × 10⁻⁶ M.

Figure S10. Experimental (a) and calculated (b) isotopic pattern for the peak of $[V^{IV}O(Me_2phen)(citr)]^-$ revealed at m/z = 464.03 in the negative ESI-MS spectrum recorded on the system $V^{IV}O^{2+}/Me_2phen/H_3citr$ (ultrapure LC-MS water, pH 4.90, molar ratio 1/2/2, V concentration 2.5 × 10⁻⁶ M).

Figure S11. ESI-MS/MS spectrum of the fragment $[V^{IV}O(Me_2phen)(citr)]^-$ recorded on the system $V^{IV}O^{2+}/Me_2phen/H_3citr$ (negative ion mode, $m/z = 464.0 \pm 1.0$, ultrapure LC-MS water, pH 4.90, molar ratio 1/2/2, V concentration 2.5×10^{-6} M).

Figure S12. Experimental (a) and calculated (b) isotopic pattern for the peak of $[V^{IV}O(Me_2phen)(citr)+2H]^+$ revealed at m/z = 466.06 in the positive ESI-MS spectrum recorded on the system $V^{IV}O^{2+}/Me_2phen/H_3citr$ (ultrapure LC-MS water, pH 4.90, molar ratio 1/2/2, V concentration 2.5 × 10⁻⁶ M).

Figure S13. High field region of the X-band anisotropic EPR spectra recorded at 120 K as a function of pH in the system $V^{IV}O^{2+}/Me_2$ phen/Hlact with a molar ratio of 1/2/4 and V concentration of 1.0 × 10⁻³ M. The $M_I = 7/2$ resonance of $[VO(Me_2phen)(H_2O)_3]^{2+}$ (equatorial-equatorial coordination) is indicated with I, of $[VO(Me_2phen)(H_2O)_3]^{2+}$ (equatorial-axial coordination) with II, of $[VO(Me_2phen)(lact)(H_2O)]^+$ with III, of cis- $[VO(Me_2phen)_2(H_2O)]^{2+}$ with IV and of cis- $[VO(Me_2phen)_2(OH)]^+$ with V.

Figure S14. Experimental (a) and calculated (b) isotopic pattern for the peak of $[V^VO_2(Me_2phen)(lact)+H]^+$ revealed at m/z = 381.06 in the positive ESI-MS spectrum of the system $V^{IV}O^{2+}/Me_2phen/Hlact$ in ultrapure LC-MS water (pH 3.80, molar ratio of 1/2/4, V concentration of 5.0×10^{-6} M).

Figure S15. Concentration distribution curves of the species formed in the system $V^{IV}O^{2+}/Me_2$ phen/MeIm with a molar ratio of 1/5/4 and V concentration of 1.0×10^{-3} M.

Figure S16. High field region of the X-band anisotropic EPR spectra recorded at 120 K at pH 7.4 in the system containing: a) V^{IV}O²⁺/Me₂phen/MeIm 1/2/4 (V^{IV}O²⁺ 1.0 × 10⁻³ M); b) V^{IV}O²⁺/Me₂phen/Hb 2/4/1 (V^{IV}O²⁺ 6.2 × 10⁻⁴ M); c) V^{IV}O²⁺/Me₂phen/Hb 2/10/1 (V^{IV}O²⁺ 6.2 × 10⁻⁴ M) and d) V^{IV}O²⁺/Hb 2/1 (V^{IV}O²⁺ 6.2 × 10⁻⁴ M). The $M_{\rm I}$ = 7/2 resonance of the species [VO(Me₂phen)(MeIm)(OH)]⁺ and *cis*-[VO(Me₂phen)₂(MeIm)]²⁺ is indicated with **I**, of VO–Me₂phen–Hb with **II** and of the sites β and γ of Hb ((VO)Hb^β and (VO)Hb^γ) with **III** and **IV**. The $M_{\rm I}$ = 7/2 resonance of VO–Me₂phen–Hb is also denoted by the dotted line.