Electronic Supplementary Information

Metallocyclic Ni₄Ln₂M₂ single-molecule magnets

Mei-Jiao Liu,^a Kong-Qiu Hu,^a Cai-Ming Liu,^b Ai-Li Cui^a and Hui-Zhong Kou^{a,*} ^a Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China. Email: kouhz@mail.tsinghua.edu.cn ^b Beijing National Laboratory for Molecular Sciences, Center for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China

	1	3	4	5	6	7
Complex	(Ln = Dy, M	(Ln = Dy, M)	(Ln = Tb, M	(Ln = Tb, M	(Ln = Gd, M)	(Ln = Gd,
	= Cr)	= Co)	= Cr)	= Fe)	= Cr)	$\mathbf{M} = \mathbf{F}\mathbf{e}\mathbf{)}$
Ln1-O1	2.329(5)	2.330(3)	2.337(4)	2.338(5)	2.349(6)	2.362(7)
Ln1-O2	2.379(5)	2.388(3)	2.391(4)	2.409(5)	2.400(6)	2.415(4)
Ln1-O3	2.516(4)	2.521(3)	2.525(4)	2.531(5)	2.532(5)	2.527(6)
Ln1-O4	2.498(5)	2.500(3)	2.511 (5)	2.509(5)	2.520(5)	2.509(6)
Ln1-O5	2.316(3)	2.341(3)	2.343(4)	2.356(5)	2.349(5)	2.357(4)
Ln1-O6	2.384(5)	2.401(3)	2.399(4)	2.421(5)	2.388(5)	2.398(5)
Ln1-O7	2.525(4)	2.534(3)	2.538(4)	2.542(5)	2.532(5)	2.556(5)
Ln1-O8	2.495(5)	2.504(4)	2.508(4)	2.515(5)	2.515(6)	2.505(5)
Ln1-O1W	2.309(6)	2.311(4)	2.327(5)	2.336(6)	2.359(6)	2.323(6)
Ni1-N9	2.028(7)	2.024(5)	1.992(6)	2.001(7)	2.014(8)	2.021(6)
Ni1-N10	2.027(6)	2.026(4)	2.026(6)	2.030(8)	2.031(7)	2.018(6)
Ni1-O5	2.038(4)	2.017(4)	2.032(6)	2.024(7)	2.030(7)	2.018(5)
Nil-O6	2.012(4)	2.020(3)	2.029(4)	2.031(5)	2.018(5)	2.012(5)
Ni2-N7	2.068(7)	2.031(4)	2.011(7)	2.012(7)	2.022(8)	2.012(5)
Ni2-N8	2.007(7)	2.006(5)	2.020(5)	2.043(6)	2.008(8)	2.015(7)
Ni2-O1	2.022(5)	2.031(3)	2.014(4)	2.018(5)	2.042(6)	2.018(4)
Ni2-O2	2.012(5)	2.011(3)	1.977(6)	2.024(7)	2.015(6)	2.005(7)
Ni1-N _{cyano}	1.993(7)	1.996(4)	2.008(4)	2.014(5)	1.992(8)	1.99(1)
Ni2-N _{cyano}	2.003(8)	2.002(4)	2.054(7)	2.051(7)	2.001(8)	1.985(6)
M-C _{cyano}	2.047(7)-	1.888(5)-	2.047(6)-	1.937(8)-	2.036(8)-	1.923(5)-
	2.077(8)	1.909(6)	2.072(7)	1.967(9)	2.08(1)	1.97(1)
C≡N-Ni	164.6(8)-	162.7(4)-	165.2(6)-	162.4(6)-	166.4(7)-	159.8(7)-
	163.9(7)	163.1(4)	166.8(5)	164.1(6)	166.8(7)	164.3(7)
M-C≡N	172.5(8)-	175.5(4)-	174.0(6)-	175.0(7)-	169.7(7)-	175.5(7)-
	177.6(9)	179.5(5)	178.2(8)	179.6(8)	177.7(9)	179.3(8)

Table S1. Selected bond distances (Å) and bond angles (°) for complexes 1 and 3-9.

Compley	8	9
Complex	(Ln = Y, M = Cr)	(Ln = Y, M = Fe)
Ln1-O1	2.308(3)	2.321(3)
Ln1-O2	2.372(3)	2.382(3)
Ln1-O3	2.484(3)	2.515(3)
Ln1-O4	2.509(3)	2.485(3)
Ln1-O5	2.366(3)	2.367(3)
Ln1-O6	2.310(3)	2.315(4)
Ln1-O7	2.516(3)	2.538(3)
Ln1-O8	2.480(3)	2.471(3)
Ln1-O1W	2.304(4)	2.292(3)
Ni1-N7	2.005(4)	2.006(4)
Ni1-N8	2.031(4)	2.017(4)
Ni1-01	2.034(3)	2.024(3)
Ni1-O2	2.009(3)	2.002(4)
Ni2-N9	2.019(4)	2.022(5)
Ni2-N10	2.012(4)	2.016(4)
Ni2-O5	2.014(3)	2.012(4)
Ni2-O6	2.021(3)	2.010(3)
Ni1-N _{cyano}	1.993(5)	1.995(5)
Ni2-N _{cyano}	1.985(5)	1.976(5)
M-C _{cyano}	2.031(5)-2.070(6)	1.920(6)-1.959(7)
C≡N-Ni	165.8(4)-165.8(4)	159.7(5)-163.4(5)
M-C≡N	172.1(4)-178.0(5)	176.1(5)-179.2(5)

Dy1-O9	2.330(5)	Dy2-O1	2.346(6)
Dy1-O10	2.525(5)	Dy2-O2	2.379(6)
Dy1-O11	2.362(6)	Dy2-O3	2.506(5)
Dy1-O12	2.392(6)	Dy2-O4	2.539(6)
Dy1-O13	2.347(6)	Dy2-O5	2.338(5)
Dy1-O14	2.553(6)	Dy2-O6	2.357(6)
Dy1-O15	2.545(5)	Dy2-O7	2.523(5)
Dy1-O16	2.525(6)	Dy2-O8	2.500(5)
Dy1-O1W	2.295(5)	Dy2-O2W	2.296(5)
Ni1-09	2.015(6)	Ni3-O5	2.013(6)
Ni1-011	2.000(5)	Ni3-O6	2.013(5)
Ni1-N19	2.012(7)	Ni3-N10	1.995(7)
Ni1-N20	1.989(6)	Ni3-N15	2.033(7)
Ni1-N19	1.987(9)	Ni3-N16	1.989(8)
Ni2-O12	2.004(6)	Ni4-O1	2.006(6)
Ni2-O13	2.032(5)	Ni4-O2	2.009(6)
Ni2-N6	1.982(8)	Ni4-N13	2.023(8)
Ni2-N17	2.029(9)	Ni4-N14	2.034(8)
Ni2-N18	2.006(8)	Ni4-N12	2.002(8)
Cr1-C	2.020(8)-2.084(9)	Cr2-C	2.015(8)-2.07(1)
C≡N-Ni1	163.9(7)	C≡N-Ni3	161.4(7)
C≡N-Ni2	164.6(8)	C≡N-Ni4	162.9(8)
C≡N-Cr1	172.5(8)-177.6(9)	C≡N-Cr2	173.0(8)-178.1(9)

 Table S2. Selected bond distances (Å) and bond angles (°) for complex 2.

	$^{2S+1}L_{J} \\$	Theoretical $\chi_m T$	Experimental $\chi_m T$	Weiss	Magnetization
	(Ln ^{III})	/cm ³ K mol ⁻¹	/cm ³ K mol ⁻¹	constant/K	(theoretical)/ $N\beta$
$Ni_4Cr_2Dy_2(1)$	⁶ H _{15/2}	36.09	38.50	12.3	30.3 (34)
$Ni_4Cr_2Dy_2(2)$	⁶ H _{15/2}	36.09	41.75	40.5	30.7 (34)
$Ni_4Co_2Dy_2(3)$	⁶ H _{15/2}	32.34	37.6	40.8	25.0 (28)
$Ni_4Cr_2Tb_2$ (4)	${}^{7}F_{6}$	31.39	30.58	29.5	22.0 (32)
$Ni_4Fe_2Tb_2$ (5)	$^{7}F_{6}$	28.39	28.47	27.9	23.4 (28)
$Ni_4Cr_2Gd_2$ (6)	${}^{8}S_{7/2}$	23.51	25.93	24.8	27.6 (28)
$Ni_4Fe_2Gd_2$ (7)	${}^{8}S_{7/2}$	20.51	21.84	21.0	24.7 (24)
$Ni_4Cr_2Y_2(8)$	/	7.75	9.15	8.6	13.2 (14)
$Ni_4Fe_2Y_2(9)$	/	4.75	6.03	6.0	6.8 (10)

 Table S3. Magnetic data for complexes 1-9.

 Table S4. Cole-Cole plots fitting parameters for complexes 1-5.

T / V		α		τ	τ		χ	
	<i>1 /</i> K	α_1	α_2	$ au_1$	τ_2	χ_{T}	χs	β
	2	5.8×10-2	-	1.91	-	13.0	0.47	-
1	3	5.7×10-2	0.23	6.7×10 ⁻³	9.3×10 ⁻²	24.85	0.37	0.85
	3.5	4.4×10 ⁻²	0.24	1.0×10 ⁻³	2.4×10 ⁻³	23.33	3.62×10 ⁻¹⁴	0.74
2	2	0.18	-	2.42	-	104.53	2.58	-
2	3	8.4×10 ⁻²	0.24	2.2×10 ⁻²	4.7×10 ⁻³	22.5	0.70	0.54
3	4	6.5×10 ⁻²	0.12	4.3×10 ⁻³	1.04×10 ⁻³	17.7	1.50	0.49
	2	0.55	0.34	0.11	1.78×10 ⁻²	32.41	6.99	0.38
	2.2	0.38	1.39	9.16×10-3	0.47	25.70	12.24	1.44
4	2.4	0.38	1.35	2.93×10-3	0.24	23.83	12.34	1.59
	2.6	0.37	0.62	1.77×10 ⁻²	9.94×10 ⁻³	28.05	4.42	0.58
	2.8	0.39	0.42	8.99×10 ⁻⁴	2.21×10 ⁻²	25.96	4.63	0.79
5	2	0.21	0.25	3.82×10-3	5.46×10 ⁻²	46.09	5.95	0.68
3	2.5	0.26	0.18	3.40×10-4	5.88×10-3	42.27	0.11	0.75

Complexes	SMM/SCM (Yes or No)	U _{eff} (K)	External dc field (kOe)	Ref
NiDyM system (M = Fe, Cr)				
[(CN)7W(CN)Ni(dmf)(valdmpn)Dy(dmf)4]·H2O	Ν	/		8b
$[\{Ru(acac)_{2}(\mu-CN)_{2}\}\{Ni(\mu-L)Dy((CH_{3}OH)(NO_{3})_{2}\}_{2}][Ru(acac)_{2}(CN)_{2}]$	Ν	/	0	4d
$\{[Ni(valpn)Dy(ONO_2)_2(H_2O)(\mu\text{-}NC)_3Fe(bipy)(CN)]\cdot 2H_2O\cdot 2CH_3CN\}_n$	Ν	/	/	11
$[\{LMe_2Ni(H_2O)Dy(H_2O)_{4.5}\}_2\{W(CN)_8\}_2] \cdot 15H_2O$	SMM	/	0	21a
$[Ni_4Dy_2Cr_2]$ -1	SMM	38.9	0	This work
$[Ni_4Dy_2Cr_2]$ -2	SMM	37.2	0	This work
$[Ni_4Dy_2Co_2]-3$	SMM	24.4	0	This work
$\{[Ni(Me_2valpn)]_2Dy(H_2O)Fe(CN)_6\}_2 \cdot 14H_2O \cdot 4DMF$	SMM	25.0	0	10
$[\{L^{Me2}NiDy(H_2O)NiL^{Me2}\}W(CN)_8]_2 \cdot 10MeCN \cdot H_2O$	SMM	26.4	0	12
$[Ni(valpn)(H_2O)Dy(H_2O)_3Fe(CN)_6]_2 \cdot 8H_2O$	SMM	17.9	2	10
${[Cu(Me_2valpn)]_2Dy(H_2O)Fe(CN)_6 \cdot 5.5H_2O \cdot 6.5CH_3CN}_n$	SMM	12.3	2	13
$[\{(CuL)_2Dy\}\{Mo(CN)_8]\cdot CH_3CN\cdot H_2O$	SMM	19.1	0	7a
$\{[Zn(Me_2valpn)]_2Dy(H_2O)Co(CN)_6\}_2 \cdot 15H_2O \cdot 2DMF \cdot 5CH_3CN$	SIM	85.9	0	4c
$\{[Zn(Me_2valpn)]_2Dy(H_2O)Cr(CN)_6\}_2 \cdot 7H_2O \cdot 4DMF$	SIM	100.9	0	4c
$\label{eq:constraint} \{ [Ni(valpn)Dy(NO_3)(H_2O)(\mu\text{-}NC)_4W(bipy)(CN)_2]\cdot 3.9H_2O\cdot 2CH_3CN \}_n$	SCM	22.8	2.5	4e
${[Ni(L)Dy(NO_3)_2(H_2O)Fe(Tp^*)(CN)_3] \cdot 2CH_3CN \cdot CH_3OH}_n$	SCM	58.2	0	7c
NiTbM system				
$[\{L^{Me2}NiTb(H_2O)NiL^{Me2}\}Co(CN)_6]_2 \cdot 2Me_2CO_2 \cdot H_2O$	Ν	/	/	12
$[(CN)_7W(CN)Ni(dmf)(valdmpn)Tb(dmf)_4] \cdot H_2O$	Ν	/		8b
$[\{LMe_2Ni(H_2O)Tb(H_2O)_{4.5}\}_2\{W(CN)_8\}_2] \cdot 15H_2O$	SMM	/	3	21a
$[\{L^{Me2}Ni(DMF)Tb(DMF)_4\}\{W(CN)_8\}]\cdot 3H_2O$	SMM	/	0	21b
$[\{L^{Me2}Ni(H_2O)Tb(DMF)_{2.5}(H_2O)_{1.5}\}\{W(CN)_8\}]H_2O\cdot 0.5DMF$	SMM	15.3	0	21b
$[Ni_4Tb_2Cr_2]-4$	SMM	21.9	0	This work
$[\{L^{Me2}NiTb(H_2O)NiL^{Me2}\}W(CN)_8]_2 \cdot 10MeCN \cdot 2H_2O$	SMM	23.0	0	12
$[Ni_4Tb_2Fe_2]$ -5	SMM	29.6	0	This work
$\label{eq:constraint} \{ [Ni(valpn)Tb(ONO_2)_2(H_2O)(\mu\text{-}NC)_3Fe(bipy)(CN)]\cdot 2H_2O\cdot 2CH_3CN \}_n$	SCM	29.1	0	11
$\{[Ni(L)Tb(NO_3)_2(H_2O)Fe(Tp^*)(CN)_3]\cdot 2CH_3CN\cdot CH_3OH\}_n$	SCM	55.6	0	7c

Table S5. Magnetic data for 3d-3d'	-4f heterotrimetallic complexes with cyanide
	bridges

Cu(II)Tb(III)M(III/V) system				
[(CN) ₅ (bipy)W(CN)Cu(3-MeOsalpn)Tb(O ₂ NO) ₂ (H ₂ O)]·3MeCN	Ν	/	/	21c
$[Cu(valpn)(H_2O)Tb(H_2O)_3Fe(CN)_6] \cdot 2H_2O$	Ν	/	0/2	13
$\{[Cu(Me_2valpn)]_2Tb(H_2O)Fe(CN)_6\cdot 4.5H_2O\cdot 1.5CH_3CN\}_n$	Ν	/	0/2	13
$[Cu(valpn)(H_2O)Tb(H_2O)_3Fe(CN)_6] \cdot 1.75H_2O$	SMM	/	0/2	13
$[{LCuTb(H_2O)_3}{Fe(CN)_6}] \cdot 4H_2O$	SMM	/	3	7b
[L ₂ CuTb(H ₂ O) ₅ (µ-NC)Mo(CN) ₇]	SMM	/	0	8a
$[Cu(H_2L)(CH_3OH)]_2Tb(H_2O)_{0.57}(DMF)_{0.43}Fe(CN) \cdot 65.5H_2O$	SMM	13	2	4a
$[(Mo(CN)_8)_2(CuLTb)_4)](Mo(CN)_8)$	SMM	19.25	0	9
$[\{W(CN)_8\}Cu(valen)Tb(H_2O)_4]_n \cdot nCH_3CN \cdot nH_2O$	SCM	53.9	0	7d
$\{[Cu_{3}Tb(L^{Pr})W(CN)_{8}(DMF)_{3}(H_{2}O)_{3}]\cdot (DMF)_{1.5}\cdot (H_{2}O)_{0.5}\}_{n}$	SCM	20	0.8	21d

S8

Fig. S1. Main molecular structure of complexes 3 (a), 4 (b), 5 (c), 6 (d),7 (e), 8 (f) and 9 (g). Hydrogen and most solvents have been omitted for clarity.

Fig. S2. Cell packing diagram for complexes 1 (left) and 2 (right).

Fig. S3. The nearest intermolecular distance of sketches for complexes 1 (left) and 2 (right).

Fig. S4. Magneto-structural correlation for bis-phenoxo-bridged Ni(II)-Gd(III) complexes. The pentagrams correspond to complexes **6** and **7**. The lines are guides for eyes.

Fig. S5. Magnetization curve for complexes 1-9 at 2 K. The solid lines for complexes 6-9 represent the calculated data based on the Brillouin function for non-coupling spins with g = 2.0.

Fig. S6. The $ln(\tau)$ vs. T^{-1} plots based on the Arrhenius relationship for complexes **1-5**.

Fig. S7. Temperature dependence of the out-of-phase (χ '') components of the ac magnetic susceptibility for 8 (left) and 9 (right) with an oscillation field of 2.5 Oe.

Fig. S8. Cole-Cole plots of complexes **1-5**. The solid lines represent the fitting results using the parameters listed in Table S4.