Electronic Supplementary Information

A Simple Quinolone Schiff-Base Containing CHEF Based Fluorescence 'turn-on' Chemosensor for Distinguishing Zn²⁺ and Hg²⁺ with High Sensitivity, Selectivity and Reversible

Yuwei Dong,^a Ruiqing Fan,^{*a} Wei Chen,^a Ping Wang,^a and Yulin Yang,^{*a}

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (P. R. China)

E-mail: fanruiqing@hit.edu.cn and ylyang@hit.edu.cn

Index

	Content	Page No.
Figure S1	IR spectra of chemosensor MQA and complexes MQA-Zn ²⁺ , MQA-	1
	Hg ²⁺ in KBr disks.	1
Figure S2	¹ H NMR spectra of chemosensor MQA and complexes MQA-Zn ²⁺ ,	1
	MQA-Hg²⁺ in d_6 -DMSO.	1
Figure S3	¹³ C NMR spectra of chemosensor MQA and complexes MQA-Zn ²⁺ ,	2
	MQA-Hg²⁺ in d_6 -DMSO.	2
Figure S4	ESI-MS spectra of (a) MQA, (b) MQA-Zn ²⁺ and (c) MQA-Hg ²⁺ .	3
Figure S5	Thermal gravimetric curve of chemosensor MQA.	4
Figure S6	(a) Benesi-Hildebrand equation plot (fluorescence intensity at 565 nm)	
	of MQA, assuming 1:1 stoichiometry for association between MQA	
	and Zn^{2+} . (b) Benesi-Hildebrand equation plot (fluorescence intensity	4
	at 530 nm) of MQA, assuming 1:1 stoichiometry for association	
	between MQA and Hg^{2+} .	
Figure S7	(a) Plot of fluorescence intensity of MQA with Zn^{2+} at 565 nm. (b)	5
	Plot of fluorescence intensity of MQA with Hg^{2+} at 530 nm.	5
Figure S8	Fluorescence spectra of MQA (10 μ M) with Hg ²⁺ (1.0 equiv.) upon	6
	titration of Zn^{2+} (0.2, 0.4, 0.6, 0.8 and 1.0 equiv.).	Ū
Figure S9	(a) Fluorescence spectra and (b) fluorescence intensity change of Zn^{2+} -	
	bound MQA in DMSO/water mixture $(1/99 \text{ v/v})$ in the presence other	
	metal ions. (c) Fluorescence spectra and (d) fluorescence intensity	6
	change of Hg ²⁺ -bound MQA in DMSO/water mixture $(1/99 \text{ v/v})$ in the	
	presence other metal ions.	
Figure S10	(a) Fluorescence spectra and (b) fluorescence intensity change of Zn^{2+} -	7
	bound MQA in DMSO/water mixture $(1/99 \text{ v/v})$ with different anions.	,
Figure S11	(a) Fluorescence spectra and (b) fluorescence intensity change of Hg^{2+} -	8
	bound MQA in DMSO/water mixture $(1/99 \text{ v/v})$ with different anions.	Ũ
Figure S12	Fluorescence response ($I_{565 \text{ nm}}$) of Zn^{2+} sensing by MQA (10 μ M) with	8
	various amino acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v).	Ũ

	The black bars represent the addition 2.0 equiv. of the various amino acids to a 10 μ M solution of MQA . The red bars represent the change of the emission that occurs upon the subsequent addition of 1.0 equiv. Zn ²⁺ to the above solution.	
Figure S13	Fluorescence response ($I_{530 \text{ nm}}$) of Hg ²⁺ sensing by MQA (10 µM) with various amino acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v). The black here represent the addition 2.0 equiv. of the various emine	
	acids to a 10 μ M solution of MQA . The red bars represent the change of the emission that occurs upon the subsequent addition of 1.0 equiv. Hg ²⁺ to the above solution.	9
Figure S14	Changes in fluorescence intensity of MQA (10 μ M) measured with Zn ²⁺ (1.0 equiv.) as a function of pH at room temperature.	9
Figure S15	Changes in fluorescence intensity of MQA (10 μ M) measured with Hg ²⁺ (1.0 equiv.) as a function of pH at room temperature.	10
Figure S16	(a) Fluorescence spectral changes of MQA (10 μ M) after the sequential addition of Hg ²⁺ and EDTA in buffer solution (bis–tris, pH 7.0). (b) Reversible changes in fluorescence intensity and (c) luminescent photos of MQA (excitation under a 365 nm UV lamp) after the sequential addition of Hg ²⁺ and EDTA.	10
Figure S17	Experimental (top) and simulated (bottom) PXRD patterns of complexes $MQA-Zn^{2+}$ (a) and $MQA-Hg^{2+}$ (b).	11
Figure S18	Depiction of the dihedral angle between the phenyl ring and quinolone ring in complexes $MQA-Zn^{2+}$ (a) and $MQA-Hg^{2+}$ (b).	11
Table S1	Standard deviation calculation.	5
Table S2	Detection limit calculation.	5
Table S3	Comparison of a few aspects of some recently published Zn-sensors.	12
Table S4	Comparison of a few aspects of some recently published Hg-sensors.	14
Table S5	Crystallographic and structural determination data for complexes $MQA-Zn^{2+}$ and $MQA-Hg^{2+}$.	17
Table S6	Selected bond distances (Å) and angles (°) for MQA-Zn ²⁺ and MQA-Hg ²⁺ .	17

Figure S1. IR spectra of chemosensor MQA and complexes MQA-Zn²⁺, MQA-Hg²⁺ in KBr disks.

Figure S2. ¹H NMR spectra of chemosensor MQA and complexes MQA-Zn²⁺, MQA-Hg²⁺ in d_6 -DMSO.

Figure S3. ¹³C NMR spectra of chemosensor MQA and complexes MQA-Zn²⁺, MQA-Hg²⁺ in d_6 -DMSO.

Figure S4. ESI-MS spectra of (a) MQA, (b) MQA-Z n^{2+} and (c) MQA-H g^{2+} .

Figure S5. Thermal gravimetric curve of chemosensor MQA.

Association constant (K_a) calculation

Assuming a 1:1 complex formation, the association constant was calculated on the basis of the titration curves of the chemosensor **MQA** with M^{2+} (Zn²⁺/Hg²⁺). The association constant was calculated according to the Benesi–Hildebrand equation (1):

$$\frac{1}{I - I_0} = \frac{1}{K_a (I_{max} - I_0) [M]^n} + \frac{1}{I_{max} - I_0}$$
⁽¹⁾

Where K_a is complex association constant, I_0 is the fluorescent intensity of **MQA** in the absence of M^{2+} , I is the fluorescent intensity recorded in the presence of added M^{2+} , I_{max} is the fluorescent intensity in presence of added $[M^{2+}]_{max}$, and n is the binding stoichiometry ratio between **MQA** and M^{2+} (Zn²⁺/Hg²⁺). The association constant (K_a) could be determined from the slope of the straight line of the plot of $1/(I - I_0)$ against $1/[M]^n$.

Figure S6. (a) Benesi-Hildebrand equation plot (fluorescence intensity at 565 nm) of **MQA**, assuming 1:1 stoichiometry for association between **MQA** and Zn²⁺. (b) Benesi-Hildebrand equation plot (fluorescence intensity at 530 nm) of **MQA**, assuming 1:1 stoichiometry for

association between MQA and Hg^{2+} .

Standard deviation and detection limit calculation

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, fluorescence intensity of **MQA** without M^{2+} (Zn²⁺/Hg²⁺) was measured by five times and the standard deviation of blank measurements was determined. To gain the slop, the fluorescence intensity data at 565 nm and 530 nm for Zn²⁺ and Hg²⁺, respectively, were plotted as a concentration of M²⁺. So the detection limit was calculated with the follow equation (2):

Detection limit =
$$3\sigma/m$$
 (2)

Where σ is the standard deviation of blank measurements, and m is the slop of fluorescence versus M^{2+} concentration.

	Fluorescence intensity
Test 1	28.20
Test 2	28.68
Test 3	27.09
Test 4	30.40
Test 5	29.85
Standard Deviation (σ)	1.32

Table S1. Standard deviation calculation.

Table S2. Detection limit calculation.

	Detection Zn ²⁺	Detection Hg ²⁺
Slope (m)	117.79 μM ⁻¹	32.65 μM ⁻¹
Detection limit $(3\sigma/m)$	0.011 µM	0.040 μM

Figure S7. (a) Plot of fluorescence intensity of MQA with Zn²⁺ at 565 nm. (b) Plot of fluorescence intensity of MQA with Hg²⁺ at 530 nm.

Figure S8. Fluorescence spectra of MQA (10 μ M) with Hg²⁺ (1.0 equiv.) upon titration of Zn²⁺ (0.2, 0.4, 0.6, 0.8 and 1.0 equiv.).

Figure S9. (a) Fluorescence spectra and (b) fluorescence intensity change of Zn²⁺-bound **MQA** in DMSO/water mixture (1/99 v/v) in the presence other metal ions. (c) Fluorescence spectra and (d) fluorescence intensity change of Hg²⁺-bound **MQA** in DMSO/water mixture (1/99 v/v) in the presence other metal ions.

Figure S10. (a) Fluorescence spectra and (b) fluorescence intensity change of Zn²⁺-bound **MQA** in DMSO/water mixture (1/99 v/v) with different anions.

Figure S11. (a) Fluorescence spectra and (b) fluorescence intensity change of Hg²⁺-bound **MQA** in DMSO/water mixture (1/99 v/v) with different anions.

None Glycine Cysteine Alanine Proline Serine Tyrosine

Figure S13. Fluorescence response ($I_{530 \text{ nm}}$) of Hg²⁺ sensing by **MQA** (10 µM) with various amino acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v). The black bars represent the addition 2.0 equiv. of the various amino acids to a 10 µM solution of **MQA**. The red bars represent the change of the emission that occurs upon the subsequent addition of 1.0 equiv. Hg²⁺ to the above solution.

Figure S14. Changes in fluorescence intensity of MQA (10 μ M) measured with Zn²⁺ (1.0 equiv.) as a function of pH at room temperature.

Figure S15. Changes in fluorescence intensity of MQA (10 μ M) measured with Hg²⁺ (1.0 equiv.) as a function of pH at room temperature.

Figure S16. (a) Fluorescence spectral changes of MQA (10 μ M) after the sequential addition of Hg²⁺ and EDTA in buffer solution (bis–tris, pH 7.0). (b) Reversible changes in fluorescence intensity and (c) luminescent photos of MQA (excitation under a 365 nm UV lamp) after the sequential addition of Hg²⁺ and EDTA.

Figure S17. Experimental (top) and simulated (bottom) PXRD patterns of complexes MQA-Zn²⁺ (a) and MQA-Hg²⁺ (b).

Figure S18. Depiction of the dihedral angle between the phenyl ring and quinolone ring in complexes MQA-Zn²⁺ (a) and MQA-Hg²⁺ (b).

Chemosensor	No. of steps for synthesis	Detection Limit (µM)	Binding constant (M ⁻¹)	Percent of water in solution	Reference
	1	2.5	$1.9 \times 10^5 (Zn1)$	100%	[S1]
			1.5×10^4 (Zn2)		
			6.1×10^3 (Zn3)		
N N					
	5	0.0719	1.05×10^{6}	0 (100% methanol)	[S2]
	4	2.2	4×104	0 (5% acatonitrila)	[\$2]
	4	5.2	$4 \times 10^{\circ}$	0(3% acetomume)	[33]
0	3	0.066	$1.4 imes 10^{6}$	0 (100% acetonitrile)	[S4]
	1	65.41	$4.8 imes 10^5$	50%	[S5]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					

 Table S3. Comparison of a few aspects of some recently published Zn-sensors.



Chemosensor	No. of steps for synthesis	Detection Limit (µM)	Binding constant (M ⁻¹ )	Percent of water in solution	Reference
	1	3.1	No data	0 (100% ethanol)	[S11]
N- PF6	2	0.0718	No data	100%	[S12]
HC=N-	1	0.05595	$9.35 \times 10^4$	0 (100% DMSO)	[S13]
N N N N N N N N N N N S	3	No data	1.02 × 10 ⁶	0 (40% ethanol)	[S14]

Table S4. Comparison of	a few aspects of some	recently published Hg	-sensors.
-------------------------	-----------------------	-----------------------	-----------





8		
	MQA-Zn ²⁺	MQA-Hg ²⁺
CCDC No.	1460774	1460775
formula	$C_{17}H_{14}Cl_2N_2OZn$	C ₁₇ H ₁₄ Cl ₂ N ₂ OHg
Mr	398.59	533.79
A cryst syst	Monoclinic	Triclinic
space group	$P2_1/c$	Р
a [Å]	7.492(18)	8.108(12)
b [Å]	15.272(4)	8.616(12)
	15.500(4)	12.299(18)
α ^[°]	90	77.039(4)
β[°]	112.715(11)	87.533(4)
γ [°]	90	82.928(4)
Volume [Å ³ ]	1636.0(7)	830.9(2)
Z	4	2
$D_{\rm c} [\rm g \cdot \rm cm^{-3}]$	1.618	2.134
$\mu \text{[mm}^{-1}\text{]}$	1.832	9.588
F(000)	808	504
Θ range [°]	1.95 - 25.00	1.70 - 25.00
<i>h</i> range	$-8 \le h \le 8$	$-9 \le h \le 9$
k range	$-16 \le k \le 18$	$-10 \le k \le 8$
<i>l</i> range	$-18 \le l \le 18$	$-14 \le l \le 14$
data/restraints/params	2829 / 0 / 208	2920 / 0 / 209
GOF	0.844	0.909
$R_1, wR_2[I > 2\sigma(I)]^a$	0.0549, 0.1011	0.0452, 0.0766
$R_1$ , $wR_2$ [all data] ^a	0.1639, 0.1268	0.0664, 0.0840
$\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  [{\rm e} \cdot {\rm \AA}^{-3}]$	0.523, -0.670	0.930, -1.280

**Table S5.** Crystallographic and structural determination data for complexes  $MQA-Zn^{2+}$  and  $MQA-Hg^{2+}$ .

 $\overline{a_{R_1} = \sum ||F_o| - |F_c|| / \sum |F_o|}; wR_2 = \left[\sum [w (F_o^2 - F_c^2)^2] / \sum [w (F_o^2)^2]\right]^{1/2}.$ 

Table S6. Selected bond distances (Å) and angles (°) for  $MQA-Zn^{2+}$  and  $MQA-Hg^{2+}$ .

Parameter	MQA-Zn ²⁺	MQA-Hg ²⁺
M(1)-N(1)	2.135(5)	2.397(7)
M(1)-N(2)	2.073(5)	2.359(7)
M(1)-Cl(1)	2.226(2)	2.384(3)
M(1)-Cl(2)	2.218(2)	2.419(3)
M(1)-O(1)	2.393(4)	2.668(6)
N(2)-C(10)	1.296(8)	1.261(11)
N(2)-M(1)-N(1)	78.6(2)	71.7(2)
N(1)-M(1)-Cl(1)	108.40(15)	111.12(18)
N(2)-M(1)-Cl(1)	110.51(15)	131.60(18)
N(1)-M(1)-Cl(2)	104.57(15)	107.20(18)
N(2)-M(1)-Cl(2)	128.33(16)	101.94(18)
Cl(2)-M(1)-Cl(1)	116.56(8)	121.09(10)
N(1)-M(1)-O(1)	147.08(19)	129.2(2)
N(2)-M(1)-O(1)	70.08(18)	62.8(2)
Cl(1)-M(1)-O(1)	92.32(13)	85.32(16)
Cl(2)-M(1)-O(1)	87.57(12)	103.11(16)
C(12)-O(1)-M(1)	114.1(4)	115.9(5)

C(17)-O(1)-M(1)	125.3(4)	123.4(5)
C(1)-N(1)-M(1)	112.2(4)	112.7(6)
C(5)-N(1)-M(1)	129.8(5)	126.3(6)
C(10)-N(2)-M(1)	115.2(4)	114.3(6)
C(11)-N(2)-M(1)	122.8(4)	122.7(6)

#### **Supporting References**

**[S1]** Zhou, Y.; Li, Z. X.; Zang, S. Q.; Zhu, Y. Y.; Zhang, H. Y.; Hou, H. W.; Mak, T. C. W. A Novel Sensitive Turn-on Fluorescent  $Zn^{2+}$  Chemosensor Based on an Easy to Prepare  $C_3$ -Symmetric Schiff-Base Derivative in 100% Aqueous Solution. *Org. Lett.* **2012**, *14*, 1214–1217.

[S2] Yang, M. D.; Zhang, Y.; Zhu, W. J.; Wang, H. Z.; Huang, J.; Cheng, L. H.; Zhou, H. P.; Wu, J. Y.; Tian. Y. P. Difunctional Chemosensor for Cu(II) and Zn(II) Based on Schiff Base Modified Anthryl Derivative with Aggregation-Induced Emission Enhancement and Piezochromic Characteristics. *J. Mater. Chem. C* **2015**, *3*, 1994–2002.

[S3] Goswami, S.; Das, A. K.; Aich, K.; Manna, A.; Maity, S.; Khanra, K.; Bhattacharyya. N. Ratiometric and Absolute Water-Soluble Fluorescent Tripodal Zinc Sensor and Its Application in Killing Human Lung Cancer Cells. *Analyst* **2013**, *138*, 4593–4598.

[S4] Song, E. J.; Kang, J.; You, G. R.; Park, G. J.; Kim, Y.; Kim, S. J.; Kim, C.; Harrison, R. G. A Single Molecule that Acts as a Fluorescence Sensor for Zinc and Cadmium and a Colorimetric Sensor for Cobalt. *Dalton Trans.* **2013**, *42*, 15514–15520.

[S5] Sarkar, D.; Pramanik, A. K.; Mondal. T. K. Coumarin Based Dual Switching Fluorescent 'turnon' Chemosensor for Selective Detection of  $Zn^{2+}$  and  $HSO_4^{-}$ : an Experimental and Theoretical Study. *RSC Adv.* **2014**, *4*, 25341–25347.

[S6] Mati, S. S.; Chall, S.; Konar, S.; Rakshit, S.; Bhattacharya, S. C. Pyrimidine-Based Fluorescent Zinc Sensor: Photo-Physical Characteristics, Quantum Chemical Interpretation and Application in Real Samples. *Sens. Actuators B* **2014**, *201*, 204–212.

**[S7]** Tang, L. J.; Dai, X.; Zhong, K. L.; Wu, D.; Wen. X. A Novel 2,5-diphenyl-1,3,4-oxadiazole Derived Fluorescent Sensor for Highly Selective and Ratiometric Recognition of Zn²⁺ in Water through Switching on ESIPT. *Sens. Actuators B* **2014**, *203*, 557–564.

[S8] Yue, Y. Y.; Dong, Q.; Zhang, Y. J.; Sun, Y. Y.; Gong, Y. J. A Highly Selective "turn-on" Fluorescent Chemosensor Based on 8-Aminoquinoline for Detection of Zn²⁺. *Anal. Methods* **2015**, 7, 5661–5666.

[S9] Yan, L. Q.; Qing, T. T.; Li, R. J.; Wang, Z. W.; Qi, Z. J. Synthesis and Optical Properties of Aggregation Induced Emission (AIE) Molecules Based on the ESIPT Mechanism as pH- and Zn²⁺-Responsive Fluorescent Sensors. *RSC Adv.* **2016**, *6*, 63874–63879.

[**S10**] Park, G. J.; Lee, J. J.; You, G. R.; Nguyen, L. T.; Noh, I.; Kim, C. A Dual Chemosensor for Zn²⁺ and Co²⁺ in Aqueous Media and Living Cells: Experimental and Theoretical Studies. *Sens. Actuators B* **2016**, *223*, 509–519.

[S11] Li, L. Q.; Yuan, L.; Liu, Z. H. A Highly Selective Turn on Fluorescence Sensor for Hg²⁺ Based on Rhodamine Derivative. *J. Fluoresc.* **2014**, *24*, 1357–1361.

[S12] Zhang, R. X.; Li, P. F.; Zhang, W. J.; Li, N.; Zhao, N. A Highly Sensitive Fluorescent Sensor with Aggregation-Induced Emission Characteristics for the Detection of Iodide and Mercury Ions in Aqueous Solution. *J. Mater. Chem. C* **2016**, *4*, 10479–10485.

[S13] Wei, T. B.; Gao, G. Y.; Qu, W. J.; Shi, B. B.; Lin, Q.; Yao, H.; Zhang, Y. M. Selective Fluorescent Sensor for Mercury(II) Ion Based on an Easy to Prepare Double Naphthalene Schiff Base. *Sens. Actuators B* **2014**, *199*, 142–147.

[S14] Yang, Z.; Hao, L. K.; Yin, B.; She, M. Y.; Obst, M.; Kappler, A.; Li, J. L. Six-Membered Spirocycle Triggered Probe for Visualizing Hg²⁺ in Living Cells and Bacteria–EPS–Mineral Aggregates. *Org. Lett.* **2013**, *15*, 4334–4337.

[**S15**] Maity, S. B.; Banerjee, S.; Sunwoo, K.; Kim, J. S.; Bharadwaj, P. K. A Fluorescent Chemosensor for Hg²⁺ and Cd²⁺ Ions in Aqueous Medium under Physiological pH and Its Applications in Imaging Living Cells. *Inorg. Chem.* **2015**, *54*, 3929–3936.

[S16] Madhu, S.; Sharma, D. K.; Basu, S. K.; Jadhav, S.; Chowdhury, A.; Ravikanth, M. Sensing Hg(II) in Vitro and in Vivo Using a Benzimidazole Substituted BODIPY. *Inorg. Chem.* **2013**, *52*, 11136–11145.

[S17] Huo, Y. P.; Wang, S. Y.; Lu, T. H.; Pan, C. Q.; Lu, Y. J.; Yang, X. H.; Hu, D. P.; Hu, S. Highly Selective and Sensitive Colorimetric Chemosensors for Hg²⁺ Based on Novel Diaminomaleonitrile Derivatives. *RSC Adv.* **2016**, *6*, 5503–5511.

[S18] Zong, L. Y.; Xie, Y. J.; Li, Q. Q.; Li, Z. A New Red Fluorescent Probe for Hg²⁺ based on Naphthalene Diimideand Iits Application in Living Cells, Reversibility on Strip Papers. *Sens. Actuators B* 2017, *238*, 735–743.

[S19] Gao, Y. L.; Zhang, C.; Peng, S. W.; Chen, H. Y. A Fluorescent and Colorimetric Probe Enables Simultaneous Differential Detection of Hg²⁺ and Cu²⁺ by Two Different Mechanisms. *Sens. Actuators B* 2017, *238*, 455–461.

[S20] Feng, L.; Shi, W.; Ma, J. C.; Chen, Y. B.; Kui, F.; Hui, Y. H.; Xie, Z. F. A Novel Thiosemicarbazone Schiff Base Derivative with Aggregation-Induced Emission Enhancement Characteristics and Its Application in Hg²⁺ Detection. *Sens. Actuators B* 2016, *237*, 563–569.