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Figure S1. IR spectra of chemosensor MQA and complexes MQA-Zn?**, MQA-Hg?* in KBr
disks.

—— MQA
—— MQA-Zn*"
—— MQA-Hg"”

= |-

8

.;) 8.8\;/

7/}

2 1l ML

E 8.74\1\

““m A
o 8 6 4 2 0

o/ppm

Figure S2. '"H NMR spectra of chemosensor MQA and complexes MQA-Zn**, MQA-Hg?" in d-
DMSO.
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Figure S3. 3C NMR spectra of chemosensor MQA and complexes MQA-Zn?**, MQA-Hg?* in
dg-DMSO.
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Figure S4. ESI-MS spectra of (a) MQA, (b) MQA-Zn?* and (c) MQA-Hg?*.
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Figure S5. Thermal gravimetric curve of chemosensor MQA.

Association constant (K,) calculation

Assuming a 1:1 complex formation, the association constant was calculated on the basis of the
titration curves of the chemosensor MQA with M?* (Zn?*/Hg?*). The association constant was
calculated according to the Benesi—Hildebrand equation (1):

1 _ 1 4 1
I_IO Ka(lmax_IO)[M]n Imax_lo

(1

Where K, is complex association constant, /; is the fluorescent intensity of MQA in the absence of
M?*, [ is the fluorescent intensity recorded in the presence of added M?*, I, is the fluorescent
intensity in presence of added [M?*].ax, and n is the binding stoichiometry ratio between MQA and
M?Z* (Zn**/Hg?*). The association constant (K,) could be determined from the slope of the straight
line of the plot of 1/(I — Iy) against 1/[M]".
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Figure S6. (a) Benesi-Hildebrand equation plot (fluorescence intensity at 565 nm) of MQA,
assuming 1:1 stoichiometry for association between MQA and Zn?*. (b) Benesi-Hildebrand
equation plot (fluorescence intensity at 530 nm) of MQA, assuming 1:1 stoichiometry for

4



association between MQA and Hg?*.

Standard deviation and detection limit calculation
The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio,
fluorescence intensity of MQA without M?* (Zn?*/Hg?") was measured by five times and the
standard deviation of blank measurements was determined. To gain the slop, the fluorescence
intensity data at 565 nm and 530 nm for Zn?* and Hg?", respectively, were plotted as a concentration
of M?*. So the detection limit was calculated with the follow equation (2):

Detection limit = 30/m 2)
Where ¢ is the standard deviation of blank measurements, and m is the slop of fluorescence versus

M?2* concentration.

Table S1. Standard deviation calculation.

Fluorescence intensity
Test 1 28.20
Test 2 28.68
Test 3 27.09
Test 4 30.40
Test 5 29.85
Standard Deviation () 1.32

Table S2. Detection limit calculation.

Detection Zn>* Detection Hg?*
Slope (m) 117.79 uM-! 32.65 uM-!
Detection limit (36/m) 0.011 uM 0.040 uM
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Figure S7. (a) Plot of fluorescence intensity of MQA with Zn?* at 565 nm. (b) Plot of
fluorescence intensity of MQA with Hg?" at 530 nm.
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Figure S8. Fluorescence spectra of MQA (10 uM) with Hg?* (1.0 equiv.) upon titration of Zn?*
(0.2,0.4, 0.6, 0.8 and 1.0 equiv.).
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Figure S9. (a) Fluorescence spectra and (b) fluorescence intensity change of Zn>*-bound MQA in
DMSO/water mixture (1/99 v/v) in the presence other metal ions. (c) Fluorescence spectra and (d)
fluorescence intensity change of Hg?*-bound MQA in DMSO/water mixture (1/99 v/v) in the
presence other metal ions.
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Figure S10. (a) Fluorescence spectra and (b) fluorescence intensity change of Zn?*-bound MQA
in DMSO/water mixture (1/99 v/v) with different anions.
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Figure S11. (a) Fluorescence spectra and (b) fluorescence intensity change of Hg?"-bound MQA
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Figure S12. Fluorescence response (Isgs nm) of Zn?* sensing by MQA (10 uM) with various amino
acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v). The black bars represent the addition 2.0
equiv. of the various amino acids to a 10 uM solution of MQA. The red bars represent the change

of the emission that occurs upon the subsequent addition of 1.0 equiv. Zn?* to the above solution.
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Figure S13. Fluorescence response (Is3g nm) of Hg?" sensing by MQA (10 uM) with various amino
acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v). The black bars represent the addition 2.0
equiv. of the various amino acids to a 10 uM solution of MQA. The red bars represent the change

of the emission that occurs upon the subsequent addition of 1.0 equiv. Hg?* to the above solution.
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Figure S14. Changes in fluorescence intensity of MQA (10 uM) measured with Zn?* (1.0 equiv.)

as a function of pH at room temperature.



=
400 -
=
= i ./..-"".-—...
(= \
o
W)
w3001 \
=
z ~~n \l
= ' B
= |
[=P]
E 200 -
o
100
T T T T T T I : I
2 4 6 8 10 12
pH

Figure S15. Changes in fluorescence intensity of MQA (10 uM) measured with Hg?" (1.0 equiv.)
as a function of pH at room temperature.
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Figure S16. (a) Fluorescence spectral changes of MQA (10 pM) after the sequential addition of
Hg?" and EDTA in buffer solution (bis—tris, pH 7.0). (b) Reversible changes in fluorescence
intensity and (c) luminescent photos of MQA (excitation under a 365 nm UV lamp) after the

sequential addition of Hg>* and EDTA.
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Figure S17. Experimental (top) and simulated (bottom) PXRD patterns of complexes MQA-Zn2*
(a) and MQA-Hg?* (b).

(a) °

11.059°

b .

10.909°

Figure S18. Depiction of the dihedral angle between the phenyl ring and quinolone ring in
complexes MQA-Zn?* (a) and MQA-Hg?* (b).
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Table S3. Comparison of a few aspects of some recently published Zn-sensors.

Chemosensor No. of steps for synthesis ~ Detection Limit (uM)  Binding constant (M~!)  Percent of water in solution  Reference
p 1 2.5 1.9 x 105 (Zn1) 100% [S1]
(™ 1.5 x 104 (Zn2)
ok 6.1 x 10° (Zn3)
H ]‘\J\
g
O > 5 0.0719 1.05 x 106 0 (100% methanol) [S2]
//—QN
SCA A A
@Nﬁﬂ H % 4 3.2 4 x 10% 0 (5% acetonitrile) [S3]
\ /N O:Q 0 N\ /)
7
°>_\ 3 0.066 1.4 x 108 0 (100% acetonitrile) [S4]
NH N/\®
N A
\ /N HO.
| 1 65.41 4.8 x 10 50% [S5]
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0.69

0.86

0.256

0.26

0.01

11.82 x 10*

2.82 x 108

5.18 x 103

No data

1.3x10°

20%

100%

20%

50%

bis-tris solution

[S6]

[S7]

[S8]

[S9]

[S10]

13



Table S4. Comparison of a few aspects of some recently published Hg-sensors.

Chemosensor No. of steps for synthesis Detection Limit (uM) Binding constant (M)  Percent of water in solution Reference

( \ 1 3.1 No data 0 (100% ethanol) [S11]
N/

QL
/\NN/\
) N

O O 2 0.0718 No data 100% [S12]
O

1 0.05595 9.35 x 10* 0 (100% DMSO) [S13]

3 No data 1.02 x 108 0 (40% ethanol) [S14]
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CH,

O—cp,
CH,
e

HzN\ /N_

/C=C O—cn,

C C
4

N N\

0.038

0.77

1.93

1.8 x10°

6.18 x 106

3.62 x 103

0 (20% DMSO)

0 (70% acetonitrile)

20%

[S15]

[S16]

[S17]
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2 1.3 4.24 x 106 0 (acetone) [S18]

1 0.07 8.75 x 104 0 (100% DMSO) [S19]

S s 4 0.907 2.51 x 10° 10% [S20]
\_ s
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Table S5. Crystallographic and structural determination data for complexes MQA-Zn?* and MQA-

Hg**.

MQA-Zn?** MQA-Hg**
CCDC No. 1460774 1460775
formula C 1 7H 1 4C lzNzOZl’l C 1 7H 1 4C12N20Hg
Mr 398.59 533.79
A cryst syst Monoclinic Triclinic
space group P2/c P
a[A] 7.492(18) 8.108(12)
b[A] 15.272(4) 8.616(12)
c [A] 15.500(4) 12.299(18)
al’] 90 77.039(4)
BI°] 112.715(11) 87.533(4)
v [°] 90 82.928(4)
Volume [A?] 1636.0(7) 830.9(2)
Z 4 2
D.[g:em™] 1.618 2.134
4 [mm'] 1.832 9.588
F (000) 808 504
O range [°] 1.95-25.00 1.70 - 25.00
h range —8<h<8 9<h<9
k range -16<k<18 -10<k<8
[ range -18</<18 -14</<14
data/restraints/params 2829/0/208 2920/0/209
GOF 0.844 0.909

R;, wRy[1>26(D)]?
R;, wR;[all data]?
Apmﬁm Apmin [C'AJ]

0.0549, 0.1011
0.1639, 0.1268
0.523, -0.670

0.0452, 0.0766
0.0664, 0.0840
0.930, —1.280

‘R = Z:||F0| - |FC||/Z|F0|; WRy = [2[w (Fo2 - Fcz)z]/z[ w (Foz)z]]l/z-

Table S6. Selected bond distances (A) and angles (°) for MQA-Zn2* and MQA-Hg?*.

Parameter MQA-Zn?* MQA-Hg?**
M(1)-N(1) 2.135(5) 2.397(7)
M(1)-N(2) 2.073(5) 2.359(7)
M(1)-CI(1) 2.226(2) 2.384(3)
M(1)-CI(2) 2218(2) 2.419(3)
M(1)-0(1) 2.393(4) 2.668(6)
N(2)-C(10) 1.296(8) 1.261(11)
N(@2)-M(1)-N(1) 78.6(2) 71.7Q2)
N(1D)-M(1)-CI(1) 108.40(15) 111.12(18)
NQ)-M(1)-CI(1) 110.51(15) 131.60(18)
N(D)-M(1)-Cl(2) 104.57(15) 107.20(18)
NQ)-M(1)-Cl(2) 128.33(16) 101.94(18)
CI(2)-M(1)-CI(1) 116.56(8) 121.09(10)
N(1)-M(1)-0(1) 147.08(19) 129.2(2)
N(@2)-M(1)-0(1) 70.08(18) 62.8(2)
CI(1)-M(1)-0(1) 92.32(13) 85.32(16)
CI(2)-M(1)-0(1) 87.57(12) 103.11(16)
C(12)-0(1)-M(1) 114.1(4) 115.9(5)
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C(17)-0(1)-M(1) 125.3(4) 123.4(5)

C(1)-N(1)-M(1) 112.2(4) 112.7(6)
C(5)-N(1)-M(1) 129.8(5) 126.3(6)
C(10)-N(2)-M(1) 115.2(4) 114.3(6)
C(11)-N(2)-M(1) 122.8(4) 122.7(6)
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