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Figure S1. IR spectra of chemosensor MQA and complexes MQA-Zn2+, MQA-Hg2+ in KBr 
disks.

Figure S2. 1H NMR spectra of chemosensor MQA and complexes MQA-Zn2+, MQA-Hg2+ in d6-
DMSO.
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Figure S3. 13C NMR spectra of chemosensor MQA and complexes MQA-Zn2+, MQA-Hg2+ in 
d6-DMSO.
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Figure S4. ESI-MS spectra of (a) MQA, (b) MQA-Zn2+ and (c) MQA-Hg2+.
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Figure S5. Thermal gravimetric curve of chemosensor MQA.

Association constant (Ka) calculation
Assuming a 1:1 complex formation, the association constant was calculated on the basis of the 
titration curves of the chemosensor MQA with M2+ (Zn2+/Hg2+). The association constant was 
calculated according to the Benesi–Hildebrand equation (1):

                      (1)

1
𝐼 ‒ 𝐼0

=  
1

𝐾𝑎(𝐼𝑚𝑎𝑥 ‒ 𝐼0)[𝑀]𝑛
+  

1
𝐼𝑚𝑎𝑥 ‒ 𝐼0

Where Ka is complex association constant, I0 is the fluorescent intensity of MQA in the absence of 
M2+, I is the fluorescent intensity recorded in the presence of added M2+, Imax is the fluorescent 
intensity in presence of added [M2+]max, and n is the binding stoichiometry ratio between MQA and 
M2+ (Zn2+/Hg2+). The association constant (Ka) could be determined from the slope of the straight 
line of the plot of 1/(I − I0) against 1/[M]n.

Figure S6. (a) Benesi-Hildebrand equation plot (fluorescence intensity at 565 nm) of MQA, 
assuming 1:1 stoichiometry for association between MQA and Zn2+. (b) Benesi-Hildebrand 
equation plot (fluorescence intensity at 530 nm) of MQA, assuming 1:1 stoichiometry for 
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association between MQA and Hg2+.
Standard deviation and detection limit calculation
The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, 
fluorescence intensity of MQA without M2+ (Zn2+/Hg2+) was measured by five times and the 
standard deviation of blank measurements was determined. To gain the slop, the fluorescence 
intensity data at 565 nm and 530 nm for Zn2+ and Hg2+, respectively, were plotted as a concentration 
of M2+. So the detection limit was calculated with the follow equation (2):

Detection limit = 3σ/m                               (2)
Where σ is the standard deviation of blank measurements, and m is the slop of fluorescence versus 
M2+ concentration.

Table S1. Standard deviation calculation.

Fluorescence intensity
Test 1 28.20
Test 2 28.68
Test 3 27.09
Test 4 30.40
Test 5 29.85

Standard Deviation (σ) 1.32

Table S2. Detection limit calculation.

Detection Zn2+ Detection Hg2+

Slope (m) 117.79 μM–1 32.65 μM–1

Detection limit (3σ/m) 0.011 μM 0.040 μM

Figure S7. (a) Plot of fluorescence intensity of MQA with Zn2+ at 565 nm. (b) Plot of 
fluorescence intensity of MQA with Hg2+ at 530 nm.
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Figure S8. Fluorescence spectra of MQA (10 μM) with Hg2+ (1.0 equiv.) upon titration of Zn2+ 
(0.2, 0.4, 0.6, 0.8 and 1.0 equiv.).

Figure S9. (a) Fluorescence spectra and (b) fluorescence intensity change of Zn2+-bound MQA in 
DMSO/water mixture (1/99 v/v) in the presence other metal ions. (c) Fluorescence spectra and (d) 

fluorescence intensity change of Hg2+-bound MQA in DMSO/water mixture (1/99 v/v) in the 
presence other metal ions.
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Figure S10. (a) Fluorescence spectra and (b) fluorescence intensity change of Zn2+-bound MQA 
in DMSO/water mixture (1/99 v/v) with different anions.
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Figure S11. (a) Fluorescence spectra and (b) fluorescence intensity change of Hg2+-bound MQA 
in DMSO/water mixture (1/99 v/v) with different anions.

Figure S12. Fluorescence response (I565 nm) of Zn2+ sensing by MQA (10 μM) with various amino 
acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v). The black bars represent the addition 2.0 

equiv. of the various amino acids to a 10 μM solution of MQA. The red bars represent the change 
of the emission that occurs upon the subsequent addition of 1.0 equiv. Zn2+ to the above solution.
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Figure S13. Fluorescence response (I530 nm) of Hg2+ sensing by MQA (10 μM) with various amino 
acids (2.0 equiv.) in DMSO/water mixture (1/99 v/v). The black bars represent the addition 2.0 

equiv. of the various amino acids to a 10 μM solution of MQA. The red bars represent the change 
of the emission that occurs upon the subsequent addition of 1.0 equiv. Hg2+ to the above solution.

Figure S14. Changes in fluorescence intensity of MQA (10 μM) measured with Zn2+ (1.0 equiv.) 
as a function of pH at room temperature.
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Figure S15. Changes in fluorescence intensity of MQA (10 μM) measured with Hg2+ (1.0 equiv.) 
as a function of pH at room temperature.

Figure S16. (a) Fluorescence spectral changes of MQA (10 μM) after the sequential addition of 
Hg2+ and EDTA in buffer solution (bis–tris, pH 7.0). (b) Reversible changes in fluorescence 
intensity and (c) luminescent photos of MQA (excitation under a 365 nm UV lamp) after the 

sequential addition of Hg2+ and EDTA.
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Figure S17. Experimental (top) and simulated (bottom) PXRD patterns of complexes MQA-Zn2+ 
(a) and MQA-Hg2+ (b).

Figure S18. Depiction of the dihedral angle between the phenyl ring and quinolone ring in 
complexes MQA-Zn2+ (a) and MQA-Hg2+ (b).
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Table S3. Comparison of a few aspects of some recently published Zn-sensors.

Chemosensor No. of steps for synthesis Detection Limit (μM) Binding constant (M–1) Percent of water in solution Reference

N

N
N
H

NH

N

N

HN
N

N

Cl

1 2.5 1.9 × 105 (Zn1)
1.5 × 104 (Zn2)
6.1 × 103 (Zn3)

100% [S1]

N
HO

N

5 0.0719 1.05 × 106 0 (100% methanol) [S2]

N

NH H
N

O O

NH
O

N

N

N

4 3.2 4 × 104 0 (5% acetonitrile) [S3]

N

NH

O

N
N

HO

3 0.066 1.4 × 106 0 (100% acetonitrile) [S4]

O O

OH N

N
1 65.41 4.8 × 105 50% [S5]
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N

N

N
H

N
N
H

N

OH OH

1 0.69 11.82 × 104 20% [S6]

O

N N

HN

N

N

N
O

2 0.86 2.82 × 108 100% [S7]

N

HN

O

N
H

HO

2 0.256 5.18 × 105 20% [S8]

N

OH

F

N
1 0.26 No data 50% [S9]

N

HNNH

N

O 2 0.01 1.3 × 105 bis-tris solution [S10]
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Table S4. Comparison of a few aspects of some recently published Hg-sensors.

Chemosensor No. of steps for synthesis Detection Limit (μM) Binding constant (M–1) Percent of water in solution Reference

O

N N

N N

O

N

O

1 3.1 No data 0 (100% ethanol) [S11]

N
+

PF6
-

2 0.0718 No data 100% [S12]

HC N
1 0.05595 9.35 × 104 0 (100% DMSO) [S13]

O

NH

O

N
S

N

NN

3 No data 1.02 × 106 0 (40% ethanol) [S14]
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O O

N N

NN NN

NH HN
O O

N
N N

NB BF F F
F

8 0.038 1.8 × 105 0 (20% DMSO) [S15]

CH3

NN B
F FO

O
H3C

HN
N

3 0.77 6.18 × 106 0 (70% acetonitrile) [S16]

C C
H2N

C C

N

NN

O

O

O

CH3

CH3

CH3

1 1.93 3.62 × 103 20% [S17]
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N

N

O O

O O

NH

N
N

N

N

N

2 1.3 4.24 × 106 0 (acetone) [S18]

N

H
N

N

HO

O
O

1 0.07 8.75 × 104 0 (100% DMSO) [S19]

N N
NNHN NH

NH2H2N
S S 4 0.907 2.51 × 105 10% [S20]
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Table S5. Crystallographic and structural determination data for complexes MQA-Zn2+ and MQA-
Hg2+.

MQA-Zn2+ MQA-Hg2+

CCDC No. 1460774 1460775
formula C17H14Cl2N2OZn C17H14Cl2N2OHg
Mr 398.59 533.79
A cryst syst Monoclinic Triclinic
space group P21/c P
a [Å] 7.492(18) 8.108(12)
b [Å] 15.272(4) 8.616(12)
c [Å] 15.500(4) 12.299(18)
α [˚] 90 77.039(4)
β [˚] 112.715(11) 87.533(4)
γ [˚] 90 82.928(4)
Volume [Å3] 1636.0(7) 830.9(2)
Z 4 2
Dc [g·cm–3] 1.618 2.134
μ [mm–1] 1.832 9.588
F (000) 808 504
Θ range [˚] 1.95 – 25.00 1.70 – 25.00
h range –8 ≤ h ≤ 8 –9 ≤ h ≤ 9
k range –16 ≤ k ≤ 18 –10 ≤ k ≤ 8
l range –18 ≤ l ≤ 18 –14 ≤ l ≤ 14
data/restraints/params 2829 / 0 / 208 2920 / 0 / 209
GOF 0.844 0.909
R1, wR2[I>2σ(I)]a 0.0549, 0.1011 0.0452, 0.0766
R1, wR2[all data]a 0.1639, 0.1268 0.0664, 0.0840
Δρmax, Δρmin [e·Å–3] 0.523, –0.670 0.930, –1.280

a R1 = ||Fo| – |Fc||/|Fo|; wR2 = [[w (Fo
2 – Fc

2)2]/[ w (Fo
2)2]]1/2.

Table S6. Selected bond distances (Å) and angles (°) for MQA-Zn2+ and MQA-Hg2+.

Parameter MQA-Zn2+ MQA-Hg2+

M(1)-N(1) 2.135(5) 2.397(7)
M(1)-N(2) 2.073(5) 2.359(7)
M(1)-Cl(1) 2.226(2) 2.384(3)
M(1)-Cl(2) 2.218(2) 2.419(3)
M(1)-O(1) 2.393(4) 2.668(6)
N(2)-C(10) 1.296(8) 1.261(11)
N(2)-M(1)-N(1) 78.6(2) 71.7(2)
N(1)-M(1)-Cl(1) 108.40(15) 111.12(18)
N(2)-M(1)-Cl(1) 110.51(15) 131.60(18)
N(1)-M(1)-Cl(2) 104.57(15) 107.20(18)
N(2)-M(1)-Cl(2) 128.33(16) 101.94(18)
Cl(2)-M(1)-Cl(1) 116.56(8) 121.09(10)
N(1)-M(1)-O(1) 147.08(19) 129.2(2)
N(2)-M(1)-O(1) 70.08(18) 62.8(2)
Cl(1)-M(1)-O(1) 92.32(13) 85.32(16)
Cl(2)-M(1)-O(1) 87.57(12) 103.11(16)
C(12)-O(1)-M(1) 114.1(4) 115.9(5)
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C(17)-O(1)-M(1) 125.3(4) 123.4(5)
C(1)-N(1)-M(1) 112.2(4) 112.7(6)
C(5)-N(1)-M(1) 129.8(5) 126.3(6)
C(10)-N(2)-M(1) 115.2(4) 114.3(6)
C(11)-N(2)-M(1) 122.8(4) 122.7(6)
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