Supporting information:

 $Cp_2Ni^{[1]}$ and $[CpNi(COD)]BF_4^{[2]}$ were both synthesized according to literature procedures. DIB ligands were synthesised by sonication of the corresponding aniline with 2,3-butadione.

Synthesis of 1. A solution of $[Ni(cp)(cod)]BF_4$ (100 mg (0.314 mmol)) and Ph-DAB_{Me} (74 mg (0.314 mmol)) in dry THF (25 mL) were refluxed under Argon atmosphere for one hour. After the solution turned dark pink the solvent was removed and the solid recrystallized with DCM/ *n*-Hexane. Red crystals were obtained. Yield: 112 mg; 80%. Anal. Calc. for $C_{21}H_{21}N_2NiBF_4$ (found): C, 56.44 (55.65), H, 4.74 (4.72), N, 6.27 (6.15). ¹H NMR (250 MHz, CD₂Cl₂) δ [ppm]: 7.35 (dt, *J* = 28.0, 7.3 Hz, 6H), 7.06 (d, *J* = 7.4 Hz, 4H), 4.97 (s, 5H), 2.07 (s, 6H). ESI-MS: ($C_{21}H_{21}N_2Ni$) m/z 359.11

Synthesis of 2. A solution of [Ni(cp)(cod)]BF₄ (100 mg (0.314 mmol)) and 2-CF₃Ph-DAB_{Me} (116 mg (0.314 mmol)) in dry THF (25 mL) were refluxed under Argon atmosphere for one hour. After the solution turned dark purple the solvent was removed and the solid recrystallized with DCM/ *n*-Hexane. Purple crystals were obtained. Yield: 165 mg; 90%. Anal. Calc. for C₂₃H₁₉BF₁₀N₂Ni (found): C, 47.39 (47.64), H, 3.29 (3.54), N, 4.81 (5.04). ¹H NMR (250 MHz, CDCl₃) δ [ppm]: 7.73 (m, 6H), 7.47 (t, *J* = 7.5 Hz, 2H), 4.95 (s, 5H), 2.10 (s, 6H). **MS:** m/z: (C₂₃H₁₉F₆N₂Ni⁺): 495.08

Synthesis of 3. A solution of [Ni(cp)(cod)]BF₄ (100 mg (0.314 mmol)) and 2-OMePh-DAB_{Me} (93 mg (0.314 mmol)) in dry THF (25 mL) were refluxed under Argon atmosphere for one hour. After the solution turned dark red, the solvent was removed and the solid recrystallized with DCM/ *n*-Hexane. Red crystals were obtained. Yield: 151 mg; 95%. Anal. Calc. for $C_{23}H_{25}BF_4N_2NiO_2$ (found) C, 54.44 (54.42), H, 4.97 (5.01), N, 5.53 (5.61): ¹H NMR (250 MHz, CD₂Cl₂) δ [ppm]: 7.38 (t, *J* = 6.7 Hz, 2H), 7.10 (dd, *J* = 18.2, 7.6 Hz, 6H), 5.00 (s, 5H), 3.95 (s, 6H), 2.05 (s, 6H). ESI-MS: m/z: ($C_{23}H_{25}N_2NiO_2$ ⁺) 419.13

[1] W. L. Jolly, D. J. Chazan, N. A. D. Carey, H. C. Clark, in *Inorganic Syntheses*, John Wiley & Sons, Inc., **2007**, pp. 122-123.

[2] A. Salzer, T. L. Court, H. Werner, J. Organomet. Chem. **1973**, 54, 325-330.

Table 1 Crystal data and structure refinement for of [CpNiL]BF4

Identification code	ac353_[CpNi(dab)]BF4	ac352_[CpNi(dabf)]BF4	ac354_[CpNi(dabome)]BF4
Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å $a/^{\circ}$ $\beta/^{\circ}$ $\gamma/^{\circ}$ Volume/Å ³ Z $\rho_{calc}g/cm^{3}$ μ/mm^{-1} F(000) Crystal size/mm ³ Radiation 20 range for data collection/° Index ranges Reflections collected Independent reflections Data/restraints/parameters Goodness-of-fit on F ² Final R indexes [I>=2 σ (I)]	ac353_[CpNi(dab)]BF4 $C_{21}H_{21}BN_2F_4Ni$ 446.93 100.02 orthorhombic Pnma 11.9844(8) 15.3276(11) 10.8448(8) 90 90 90 90 90 90 90 90 90 90	ac352_[CpNi(dabf)]BF4 $C_{23}H_{19}BN_2F_{10}Ni$ 582.11 99.99 orthorhombic Pca2 ₁ 19.7420(17) 7.5757(5) 15.8268(13) 90 90 90 2367.0(3) 4 1.6333 0.913 1176.8 0.209 × 0.188 × 0.116 Mo Ka (λ = 0.71073) 4.12 to 52.78 -23 ≤ h ≤ 24, -9 ≤ k ≤ 6, -19 ≤ I ≤ 17 16211 4737 [R _{int} = 0.0703, R _{sigma} = 0.0946] 4737/21/336 1.008 R ₁ = 0.0473, wR ₂ = 0.0778	C23H25BN2O2F4Ni 506.47 100 monoclinic Cc 9.1415(8) 21.906(2) 11.8206(10) 90 104.863(4) 90 2287.9(4) 4 1.4702 0.903 1048.8 0.322 \times 0.198 \times 0.105 Mo Ka (λ = 0.71073) 3.72 to 52.88 -11 \leq h \leq 11, -26 \leq k \leq 27, -14 \leq l \leq 14 15856 4550 [Rint = 0.0312, Rsigma = 0.0498] 4550/108/334 1.036
Final R indexes [I>=2ơ (I)] Final R indexes [all data] Largest diff. peak/hole / e Å- ³ Flack parameter	R ₁ = 0.0311, wR ₂ = 0.1099 R ₁ = 0.0431, wR ₂ = 0.1290 0.69/-0.60	R ₁ = 0.0473, wR ₂ = 0.0778 R ₁ = 0.0834, wR ₂ = 0.0892 0.76/-0.70 -0.00(2)	R1 = 0.0552, wR2 = 0.1373 R1 = 0.0673, wR2 = 0.1453 0.55/-0.42 8.539(15)

Bond	1⁺	2+	3+	Free Ligand	Free Ligand	Free
				(Ph){Kovach,	(<i>o</i> -	Ligand (o-
				2011 #236}	CF3){Bomfim,	Me)
			2011 #2005	2007 #235}		

Ni1-N1	1.8544(16)	1.870(3)	1.866(4)			
Ni1–N2	1.8544(16)	1.867(3)	1.881(6)			
Ni1–Cp	1.699	1.714	1.718			
	1.307(3)	1.301(5)	1.319(6)	1.281	1.280	1.280(2)
N2-C7	1.307(3)	1.317(5)	1.304(7)	1.281	1.280	1.280(2)
⁻ Ē6–Ē7 ⁻	⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	1.472(6)	⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻ ⁻	1.503	 1.513	1.502(2)

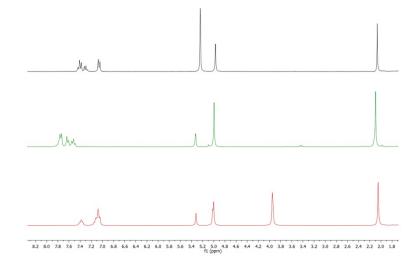


Figure S1. 1H-NMR of complexes 1^+ , 2^+ , and 3^+ in CD_2Cl_2

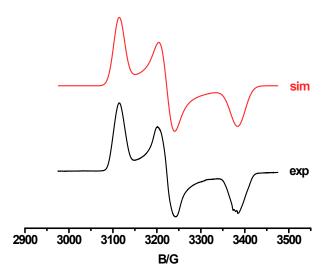


Figure S2. ESR Spectrum of the chemically reduced species 1^+ with Cp₂Co in toluene, 120 K

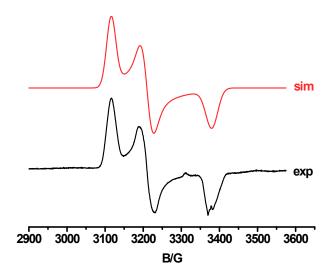


Figure S3. ESR Spectrum of the chemically reduced species 2^+ with Cp₂Co in toluene, 120 K

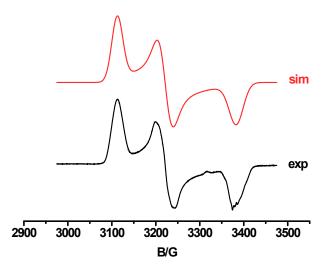
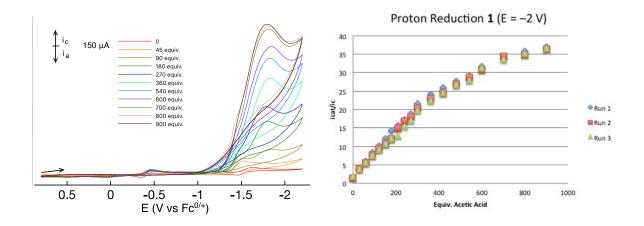
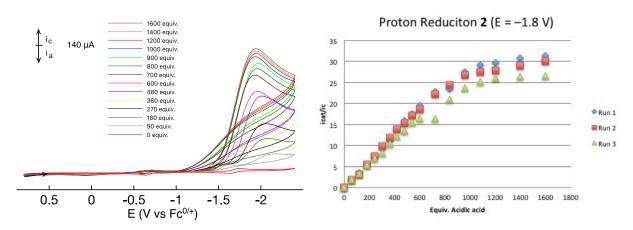




Figure S3. ESR Spectrum of the chemically reduced species 3⁺ with Cp₂Co in toluene, 120 K

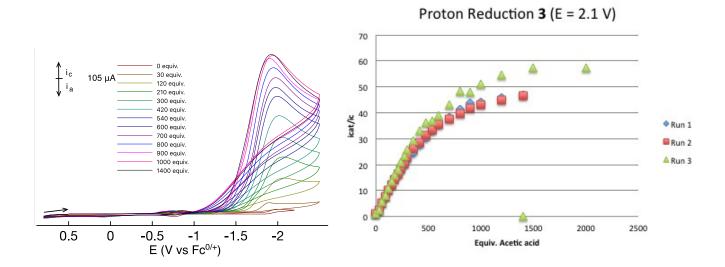
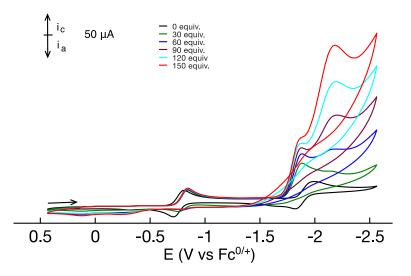


Figure S4. Electrocatalytic reduction of acetic acid by **1** in $CH_3CN/0.1 \text{ M Bu}_4\text{NPF}_6$ at 298 K, the scan rate was 100 mV/s with a 1 mm glassy carbon working electrode, Pt counter electrode, Ag reference electrode. Catalytic current (ic) to the peak current of the Ni(II/I) couple in the absence of acid (ic) as a function of the concentration of acetic acid. Select voltammograms displayed as example of a typical run, select plots are



displayed for clarity, full runs were performed at 30 equiv. of acetic acid intervals.

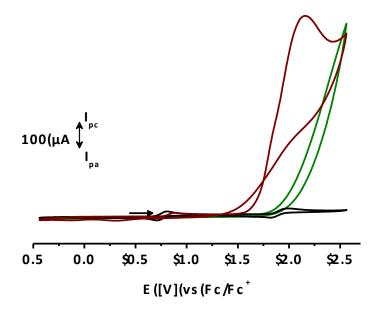

Figure S5. Electrocatalytic reduction of acetic acid by **2** in $CH_3CN/0.1$ M Bu_4NPF_6 at 298 K, the scan rate 100 mV/s with a 1 mm glassy carbon working electrode, Pt counter electrode, Ag reference electrode. Catalytic current (ic) to the peak current of the Ni(II/I) couple in the absence of acid (ic) as a function of the concentration of acetic acid. Select voltammograms displayed as example of a typical run, select plots are displayed for clarity, full runs were performed at 30 equiv. of acetic acid intervals.

Figure S6. Electrocatalytic reduction of acetic acid by **3** in CH₃CN/0.1 M Bu₄NPF₆ at 298 K, the scan rate was 100 mV/s with a 1 mm glassy carbon working electrode, Pt counter electrode, Ag reference electrode. Catalytic current (ic) to the peak current of the Ni(II/I) couple in the absence of acid (ic) as a function of the concentration of acetic acid. Select voltammograms displayed as example of a typical run, select plots are displayed for clarity, full runs were performed at 30 equiv. of acetic acid intervals.

Figure S7. Electrocatalytic reduction of acetic acid at lower concentrations by **3** in $CH_3CN/0.1$ M Bu_4NPF_6 at 298 K, the scan rate was 100 mV/s with a 1 mm glassy carbon working electrode, Pt counter electrode, Ag reference electrode.

Figure S8. Cyclic voltammetry of acetic acid with **3** (red) and without **3** (green) in $CH_3CN/0.1$ M Bu_4NPF_6 at 298 K, the scan rate was 100 mV/s with a 1 mm glassy carbon working electrode, Pt counter electrode, Ag reference electrode.