Electronic Supplementary Information

Promoted photoelectrocatalytic hydrogen evolution of a type II structure via Al₂O₃ recombination barrier layer deposited by atomic layer deposition

Yajun Wang^a, Weikun Bai^a, Haiquan Wang^a, Yao Jiang^a, Shanlei Han^a, Huaqian Sun^a, Juan Chen^a, Yuming Li^a, Guiyuan Jiang^a*, Zhen Zhao^a, Qing Huan^b*

^aState Key Laboratory of Heavy Oil Processing, China University of Petroleum,

Beijing 102249, China. Email: jianggy@cup.edu.cn, Tel: +86-10-8973-9125

^bInstitute of Physics, Chinese Academy of Sciences, Beijing 100190, China. Email: huanq@iphy.ac.cn, Tel/Fax: +86-10-82649096

Fig. S1 a plot of $(\alpha hv)^2$ versus the photon energy (hv) of TiO₂ nanowire arrays and different configurations based on TiO₂ nanowire arrays

Fig. S2 SEM image and elemental mapping images of CdSe/Al₂O₃/TiO₂ nanowires

Fig. S3 Raman spectra of TiO₂, Al_2O_3/TiO_2 , CdSe/TiO₂, CdSe/Al₂O₃/TiO₂ and $Al_2O_3/CdSe/TiO_2$ nanowire arrays

Fig . S4 XPS spectra of TiO₂, Al₂O₃/TiO₂, CdSe/TiO₂, CdSe/Al₂O₃/TiO₂ and Al₂O₃/CdSe/TiO₂ nanowire arrays: (a) Ti 2p peaks, (b) Al 2p peaks, (c) Cd 3d peaks and (d) Se 3d peaks.

The XPS measurement was performed to investigate the chemical states of each element in the TiO₂ nanowire arrays and different configurations based on TiO₂ nanowire arrays. Fig. S4 shows the XPS magnified spectra of Ti 2p, Al 2p, Cd 3d and Se 3d. In the Ti 2p spectra, the peaks with binding energy of 457.9 and 463.7 eV are attributed to Ti 2p3/2 and Ti 2p1/2, respectively, indicating that Ti is in the form of Ti⁴⁺ [1]. The Ti 2p peaks in the Al₂O₃/TiO₂, CdSe/TiO₂ Al₂O₃/CdSe/TiO₂ and CdSe/Al₂O₃/TiO₂ all present a slight shift when compared to that of pure TiO₂. This result indicates that the chemical environment of Ti has changed after CdSe and Al₂O₃ deposition and chemical interactions between the TiO₂, CdSe and Al₂O₃ have formed. In the Al 2p spectra, the peak at 73.8 eV corresponds to the binding energy of Al 2p, which can be ascribed to the Al₂O₃ [2]. The Al 2p peaks in the Al₂O₃/TiO₂ also present a slight shift when compared to that of pure Al₂O₃/TiO₂. In the Cd 3d spectra, two peaks located at 404.5 and 411.3 eV are related to the Cd 3d_{5/2} and Cd 3d_{3/2}, belonging to the Cd²⁺ [3]. The Se 3d

spectra shows two different peaks at 53.6 and 58.4 eV, corresponding to the Se $3d_{3/2}$ and Se $3d_{5/2}$ [3]. The Se 3d peaks in the Al₂O₃/CdSe/TiO₂ and CdSe/Al₂O₃/TiO₂ all present a slight shift when compared to that of CdSe/TiO₂. These results all imply that there are chemical interactions between Al₂O₃, CdSe and TiO₂, which is beneficial to the charge separation and transfer.

Fig. S5 EIS Nyquist plots of TiO₂, Al₂O₃/TiO₂, CdSe/TiO₂, CdSe/Al₂O₃/TiO₂ and Al₂O₃/CdSe/TiO₂ nanowire arrays

Fig S6 SEM images of CdSe/Al₂O₃/TiO₂ before (a) and after (b) PEC hydrogen evolution reaction

Fig S7 TEM images of CdSe/Al_2O_3/TiO_2 before (a) and after (b) PEC hydrogen evolution reaction

References

- [1] Surf. Coat. Tech., 2014, 242, 20-28.
- [2] J. Nanosci. Nanotechnol., 2016, 16, 4820-4824.
- [3] J. Mol. Catal. A: Chem., 2006, 247, 268-274.