Supplementary Information

Magnetic structure and properties of centrosymmetric twisted-melilite K₂CoP₂O₇

Matthew Sale^{†,‡}, Maxim Avdeev^{†,‡*}, Zakiah Mohamed[‡], Chris D. Ling[‡], Prabeer Barpanda[§]

a. † Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC NSW 2232, Australia

^{b. ‡} School of Chemistry, The University of Sydney, Sydney NSW 2006, Australia

^c § Faraday Materials Laboratory, Materials Research Center, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India

Table S1. Experimental and theoretical cell parameters and atomic coordinates. Thermal factors were included in the refinement in an overall isotropic form, B_{iso}, which converged to the value of 0.30(4) Å² for both 3 K and 20 K data sets.

		3К			20K		DFT			
a, Å	7.8855(2)				7.8849(3)		8.0043			
c, Å		11.2378(4	4)		11.2377(4)		11.4784	ļ	
Volume		698.78(4	-)		698.67(4)			735.43		
		х			У		z			
	NPD 3K	NPD 20K	DFT	NPD 3K	NPD 20K	DFT	NPD 3K	NPD 20K	DFT	
К1	0.3140(5)	0.3135(6)	0.315241	0.3140(5)	0.3135(6)	0.315241	0	0	0	
К2	0.8534(6)	0.8530(6)	0.84881	-0.8534(6)	-0.8530(6)	-0.84881	0	0	0	
Co1	0.5	0.5	0.5	0	0	0	0.25	0.25	0.25	
P1	0.1369(3)	0.1369(3)	0.136094	0.1369(3)	0.1369(3)	0.136094	0.2834(3)	0.2835(3)	0.282128	
01	0	0	0	0	0	0	0.3351(5)	0.3350(5)	0.332604	
02	0.1366(2)	0.1364(3)	0.135858	0.1366(2)	0.1364(3)	0.135859	0.1518(3)	0.1517(3)	0.150717	
03	0.3021(2)	0.3023(3)	0.30099150	0.0791(2)	0.0782(2)	0.07827450	0.3434(2)	0.3431(2)	0.34034750	

Table S2. Interatomic distances and angles for each super-super exchange pathway for the low temperature experimentally measured structure and DFT relaxed structure of anti-melilite $K_2CoP_2O_7$ and melilite $Sr_2CoGe_2O_7$. J_1 corresponds to the intralayer exchange. J_{2a} and J_{2b} correspond to interlayer via inequivalent K1 and K2 sites, respectively.

	K ₂ CoP	₂ O ₇ Experimen	tal 3K	K ₂ CoP ₂	O7 DFT Relaxed	(U=4.5)	Sr ₂ CoGe ₂ O ₇ Experimental 2.5K					
Pathway	J ₁	J _{2a}	J _{2b}	J ₁	J _{2a}	J _{2b}	J ₁	J _{2a}	J _{2b}			
Multiplicity (per unit cell)	4	4	4	4	4	4	4	4	4			
Multiplicity (per J pathway)	1	2	2	1	2	2	1	2	2			
Atom1	Со	Со	Со	Со	Со	Со	Со	Со	Со			
Atom2	0	0	0	0	0	0	0	0	0			
Atom3	Р	К1	К2	Р	К1	К2	Ge	Sr	Sr			
Atom4	0	0	0	0	0	0	0	0	0			
Atom5	Со	Со	Со	Со	Со	Co	Со	Со	Со			
	Interatomic Distances											
1-2	1.981	1.981	1.981	2.001	2.001	2.001	1.955	1.955	1.955			
2-3	1.536	2.882	2.818	1.550	2.942	2.863	1.754	2.857	2.559			
3-4	1.536	2.882	2.818	1.550	2.942	2.863	1.754	2.559	2.857			
4-5	1.981	1.981	1.981	2.001	2.001	2.001	1.955	1.955	1.955			
1-3	3.083	4.022	4.123	3.132	4.097	4.183	3.153	4.066	4.017			
2-4	2.487	3.520	3.520	2.521	3.665	3.665	2.760	3.833	3.833			
3-5	3.083	4.022	4.123	3.132	4.097	4.183	3.153	4.017	4.066			
	Angles											
1-2-3	121.926	110.202	117.351	123.216	110.512	117.524	116.342	113.985	125.198			
2-3-4	108.096	75.274	77.302	108.819	77.049	79.612	103.775	89.908	89.908			
3-4-5	121.926	110.202	117.351	123.216	110.512	117.524	116.342	125.198	113.985			
1-3-5	129.465	88.622	85.920	129.288	88.909	86.640	132.467	82.133	82.133			

Table S3. Unit cell parameters of DFT relaxed structures of $K_2CoP_2O_7$ with U of 4.0, 4.2 and 4.5eV

Structure type	U (eV)	a (Å)	b (Å)	c (Å)	α	β	γ	Volume (Å)	Total Energy	Energy difference
									(K/FU)	(K/FU)
Experimental twisted-	4.0	8.0016	8.0018	11.4802	90	90	90	735.055	-907189.1	0
melilite-type structure	4.3	8.0032	8.0034	11.4791	90	90	90	735.279	-906494.6	0
	4.5	8.0043	8.0044	11.4784	90	90	90	735.426	-906043.6	0
Hypothetical melilite-type	4.0	8.0585	8.0587	11.4081	90	90	90	740.852	-906801.9	387.2
structure	4.3	8.0603	8.0604	11.4064	90	90	90	741.064	-906108.7	386.0
	4.5	8.0614	8.0615	11.4055	90	90	90	741.210	-905659.6	384.0

Table S4. Results of ionic relaxations of different configurations of a hypothetical $K_2COP_2O_7$ with a melilite structure ($P\overline{42}\overline{1}\overline{m}$) – relaxed unit cell parameters and relative final energies for U = 4.5 eV.

Magnetic configuration	G-type	C-type
A (Å)	8.0614	8.06141
В	8.06152	8.06153
С	11.40546	11.40546
Volume Å ³	741.2091	741.21
Energy (K/FU)	0.0134	0

		C-type		G-type				
Atom	x	У	Z	x	У	Z		
Co1	0.5	0	0.250007	0.5	0	0.250007		
Co2	0	0.5	0.249993	0	0.5	0.249993		
Co3	0.5	0	0.750007	0.5	0	0.750007		
Co4	0	0.5	0.749993	0	0.5	0.749993		
K1	0.664985	0.664989	0.005494	0.664986	0.66499	0.005494		
К2	0.664985	0.664989	0.505494	0.664986	0.664989	0.505494		
К3	0.835015	0.164989	0.994506	0.835014	0.164989	0.994506		
K4	0.835015	0.164989	0.494506	0.835014	0.164989	0.494506		
K5	0.164985	0.835011	0.994506	0.164986	0.835011	0.994506		
К6	0.164985	0.835011	0.494506	0.164986	0.835011	0.494506		
K7	0.335015	0.335011	0.005494	0.335014	0.335011	0.005494		
K8	0.335015	0.335011	0.505494	0.335014	0.335011	0.505494		
01	0.5	0.5	0.321608	0.5	0.5	0.321608		
02	0.5	0.5	0.821608	0.5	0.5	0.821608		
03	0.577491	0.202275	0.33475	0.577491	0.202275	0.33475		
04	0.577491	0.202275	0.83475	0.577491	0.202275	0.83475		
05	0.638894	0.361118	0.141649	0.638893	0.361119	0.141649		
O6	0.638894	0.361118	0.641649	0.638893	0.361119	0.641649		
07	0.702269	0.922514	0.165246	0.702269	0.922514	0.165246		
08	0.702269	0.922515	0.665246	0.702269	0.922514	0.665246		
09	0.797731	0.422515	0.334754	0.797731	0.422514	0.334754		
010	0.797731	0.422515	0.834755	0.797731	0.422515	0.834754		
011	0.861106	0.861118	0.358351	0.861107	0.861119	0.358351		
012	0.861106	0.861118	0.858351	0.861107	0.861119	0.858351		
013	0.922509	0.702274	0.16525	0.922509	0.702275	0.16525		
014	0.922509	0.702274	0.66525	0.922509	0.702275	0.66525		
015	0	0	0.178392	0	0	0.178392		
016	0	0	0.678392	0	0	0.678392		
017	0.077491	0.297725	0.16525	0.077491	0.297725	0.16525		
018	0.077491	0.297725	0.66525	0.077491	0.297725	0.66525		
019	0.138894	0.138882	0.358351	0.138893	0.138881	0.358351		
020	0.138894	0.138882	0.858351	0.138893	0.138881	0.858351		
021	0.202269	0.577485	0.334754	0.202269	0.577485	0.334754		
022	0.202269	0.577486	0.834754	0.202269	0.577485	0.834754		
023	0.297731	0.077485	0.165245	0.297731	0.077485	0.165246		
024	0.297731	0.077486	0.665246	0.297731	0.077485	0.665246		
025	0.361106	0.638882	0.141649	0.361107	0.638881	0.141649		
O26	0.361106	0.638882	0.641649	0.361107	0.638881	0.641649		
027	0.422509	0.797726	0.334751	0.422509	0.797725	0.33475		
028	0.422509	0.797726	0.83475	0.422509	0.797725	0.83475		
P1	0.635942	0.364064	0.273851	0.635942	0.364065	0.27385		
P2	0.635942	0.364064	0.773851	0.635942	0.364065	0.77385		
P3	0.864058	0.864064	0.226149	0.864058	0.864065	0.22615		

P4	0.864058	0.864064	0.726149	0.864058	0.864065	0.72615
P5	0.135942	0.135936	0.226149	0.135942	0.135935	0.22615
P6	0.135942	0.135936	0.726149	0.135942	0.135935	0.72615
P7	0.364058	0.635936	0.273851	0.364058	0.635935	0.27385
P8	0.364058	0.635936	0.773851	0.364058	0.635935	0.77385

Table S6. Non-null components of the basis vectors (BVs) for the 4d(1/2,0,1/4) site of the $P4_2/mnm$ (#136) space group and the propagation vector k=(0,0,0). The irreducible representation providing the best agreement with experimental NPD data is highlighted in bold font.

		C		1)	С	02(0,1/2/1/4	1)	С	o3(0,1/2,-1/-	4)	C	04(1/2,0,3/4	1)
IR	BV	х	у	z	х	у	Z	х	у	z	х	у	Z
Г1	1			1			-1			-1			1
Г4	1			1			-1			1			-1
Г6	1			1			1			-1			-1
Г7	1			1			1			1			1
Г8	1	1			-1			1			-1		
	2		1			1			-1			-1	
	3		1			-1			1			-1	
	4	-1			-1			1			1		
Г9	1	1			-1			-1			1		
	2		1			1			1			1	
	3		-1			1			1			-1	
	4	1			1			1			1		

Figure S1. Bottom: purely magnetic diffraction signal (difference between NPD data collected at 20 K and 3 K); middle and top: simulated magnetic diffraction patterns for G-type and C-type models, respectively.

Figure S2. Total energy of considered magnetic configurations (left) and exchange parameters J₂ and J₂ (right) as a function of U.

Figure S3. Calculated Curie-Weiss temperature as a function of U value.