Supporting Information

Syntheses of asymmetric zinc porphyrins bearing different pseudo-pyridine substituents and their photosensitization for visible-light-driven H₂ production activity

Ya Zheng, Jinming Wang, Jing Zhang, Tianyou Peng and Renjie Li*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China

Table of content

Figure S1. MALDI-TOF mass spectrum of H₂Py-1.

Figure S2. MALDI-TOF mass spectrum of H₂Py-2.

Figure S3. MALDI-TOF mass spectrum of H₂Py-3.

Figure S4. MALDI-TOF mass spectrum of H₂Py-4.

Figure S5. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-1.

Figure S6. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-2.

Figure S7. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-3.

Figure S8. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-4.

Figure S9. Comparison of the FTIR spectra of g-C₃N₄ and its ZnPy-sensitized products.

Figure S10. The typical cyclic voltammogram of ZnPys in DMF containing 0.1 M [NBu₄][ClO₄] at a scan rate of 100 mV \cdot S⁻¹.

Figure S11. UV-vis absorption and fluorescence emission spectra of ZnPys in DMF solution with excitation fixed at 426 nm.

Figure S12. Photoluminescence spectra (excited at 426 nm) of ZnPys and g-C₃N₄/ZnPys dispersion (0.67 g L⁻¹ and 1.34 g L⁻¹), DMF was used as the solvent.

Figure S13. The UV-vis absorption spectra of ZnPys-Pt/g-C₃N₄ before and after light irradiation.

Figure S1. MALDI-TOF mass spectrum of H₂Py-1.

Figure S2. MALDI-TOF mass spectrum of H₂Py-2.

Figure S3. MALDI-TOF mass spectrum of H₂Py-3.

Figure S4. MALDI-TOF mass spectrum of H₂Py-4.

Figure S5. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-1.

Figure S6. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-2.

Figure S7. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-3.

Figure S8. ¹H MNR (in DMSO-d₆) spectrum of the molecular ion of H₂Py-4.

Figure S9. Comparison of the FTIR spectra of g-C₃N₄ and its ZnPy-sensitized products.

Figure S10. The typical cyclic voltammogram of ZnPys in DMF containing 0.1 M [NBu₄][ClO₄] at a scan rate of 100 mV \cdot S⁻¹.

Figure S11. UV-vis absorption and fluorescence emission spectra of ZnPys in DMF solution with excitation fixed at 426 nm.

Figure S12. Photoluminescence spectra (excited at 426 nm) of ZnPys and g-C₃N₄/ZnPys dispersion (0.67 g L⁻¹ and 1.34 g L⁻¹), DMF was used as the solvent.

Figure S13. The UV-vis absorption spectra of $ZnPys-Pt/g-C_3N_4$ before and after the photocatalytic experiments.